Чем объясняется рост органов растения?
Растения растут всю жизнь. Рост органов растений происходит потому, что клетки этих органов активно делятся и образуют новые ткани, увеличивая сам орган. К делению способны только молодые клетки, старые клетки не делятся. У всех органов растения есть участки, на которых есть слой молодых клеток, который и растет увеличивая массу растения и его органов.
Рост органов растения — жизненная необходимость и зависит от условий окружающей среды: чем благоприятней условия, тем больше растительная масса. Каждый орган растения растет по своей причине:
- Корень — корень всегда в «поисках» воды и минеральных веществ для питания растения. Корень растет (для человека это «кончик» корня, а на самом деле корень растет вниз «головой» и для него такой рост — верхушечный) в том направлении, где наибольшее количество питательных веществ. Развитая корневая система — залог хорошего питания растения.
- Побег — его рост так же обусловлен жизненной необхолдимостью и делением слоя молодых клеток. Рост побега необходим для вынесения листьев к свету. Побег растет за счет деления клеток «конуса нарастания». Листья, заложенные в почках, так же растут за счет деления клеток дл тех пор, пока не достигают оптимального для жизнедеятельности растения, размера.
Все органы растения (как перечисленные, так и неперечисленные) растут за счет деления молодых клеток, которые в процессе митоза формируют свои полные генетические копии.
Любой орган растения, как и все растение в целом состоит из клеток, мельчайших частичек живого, которые точно также питаются, живут и умирают. Но главным, для роста органов растений, является способность клеток, их составляющих, делиться, в процессе своего развития. Делятся только молодые клетки растений, которые содержат в себе несколько маленьких вакуолей. Старые клетки утрачивают способность к делению и постепенно затвердевают. Рост растения происходит по всем направлениям, но во всех случаях рост направлен на улучшение условий существования растения. Стебель растет преимущественно вверх, чтобы поднять листья ближе к солнцу и не оставить их в тени других растений. Растет стебель и в толщину, чтобы удерживать увеличивающуюся массу листьев. Листья растут чтобы получать больше солнечного света и давать растению больше органических веществ в процессе фотосинтеза. Корни добывают воду и минеральные вещества. Плод растет чтобы созрели семена и растение могло размножаться. И весь этот рост органов растения объясняется делением маленьких клеток.
Источник
Рост и развитие растений
Рост – это необратимое увеличение размеров и массы клетки, органа или всего организма, связанное с новообразованием элементов их структур. Это понятие отражает количественные изменения, происходящие в процессе развития организма или его частей.
А развитие – это качественные изменения в структуре и функциональной активности растений и его частей в процессе онтогенеза.
Онтогенез – это процесс индивидуального развития организма от зиготы (или вегетативного зачатка) до естественной смерти.
Рост и развитие отражают наследственные особенности и всю совокупность процессов взаимодействия растительного организма с факторами внешней среды. Рост и развитие всегда связаны между собой, обусловливают друг друга.
В процессе индивидуального развития, т.е. онтогенеза, реализуется наследственная информация, называемая генотипом. Естественно, что на этот процесс влияют конкретные условия окружающей среды, в результате чего формируется фенотип – результат реализации генотипа в определенных условиях среды.
Особенности онтогенеза клеток
Выделяют 4 фазы: эмбриональную, растяжения, дифференцировки, старение и смерть дифференцированных клеток.
- Эмбриональная фаза проходит в меристемах (образовательных тканях). Делится на 2 периода: период между делениями клетки и собственно деление клетки. Структура клетки в период между делениями (другими словами, интерфаза) имеет ряд особенностей: густая цитоплазма с хорошо развитой ЭПС, мелкие вакуоли, много рибосом, митохондрий тоже много, но они еще не совсем развиты (мало крист, матрикс густой). Ядро небольшого размера с крупным ядрышком. В интерфазе очень активно идет процесс синтеза белков, что в свою очередь требует затраты энергии, соответственно, высока интенсивность дыхания. В интерфазе же происходит и редупликация ДНК.
Перед делением клетки происходят заметные изменения в энергетическом состоянии, наступает как бы энергетическая разрядка. Интенсивность обменных процессов падает, синтез белка практически прекращается.
Деление начинается с деления ядра, проходит все стадии, формируются плазмолемма, срединная пластинка, клеточная стенка. Все обменные процессы активируются. Дочерняя клетка растет до размеров материнской и вновь делится. Так не более 3-5 раз.
Эмбриональная фаза онтогенеза клетки контролируется гормонами. Для пред- и постсинтетических фаз необходим ауксин, активизирующий транскрипцию и трансляцию, а также высокую интенсивность дыхания. Цитокинин требуется для митоза и цитокинеза.
Затем эмбриональные клетки переходят в следующую фазу роста – растяжения.
- Фаза растяжения. В этой фазе происходит следующее: цитоплазма становится менее вязкой, более обводненной. Каналы ЭПС расширяются, местами переходят в цистерны. Развиваются кристы у митохондрий. Ядра принимают неправильную форму с тем, чтобы увеличить поверхность соприкосновения с цитоплазмой. Мелкие вакуоли сливаются и образуется центральная вакуоль. Скорость синтеза белка увеличивается. Возрастает, причем очень существенно, объем клетки. Основная причина – усиленное поступление воды.
Переход к фазе роста растяжением вызывается изменением соотношения концентраций ауксина и цитокинина в пользу ауксина.
Ауксин активизирует Н-помпу, направленную из цитоплазмы в клеточную стенку. Происходит закисление клеточных стенок, активизируются кислые гидролазы, разрываются связи между компонентами клеточной стенки, клеточная стенка перестает оказывать прежнее сопротивление и это приводит к увеличению сосущей силы клетки.
T – тургорное давление, создаваемое противодавлением клеточной стенки.
Если Т становится меньше, то S >. В клетки поступает вода. Ауксин активизирует транскрипцию, трансляцию, активизируется деятельность аппарата Гольджи, поступают углеводы, целлюлозо-синтетаза.
Выбор направления роста (изодиаметрический или удлинение) зависит от расположения микрофибрилл целлюлозы, за ориентацию которых ответственны микротрубочки.
- Фаза дифференциации.Дифференциация – это возникновение структурных и функциональных различий между клетками, приводящее к многообразию клеток. Природа клетки и соответственно выполняемые ею функции будут зависеть от того, какой комплекс генов в ней будет активен, причем большинство эмбриональных клеток усложняют свою структуру, другие – упрощают. Примером последних является образование члеников ситовидной трубки: исчезают клеточные ядра, тонопласт. В клетках-спутницах флоэмы формируется большое количество митохондрий, а в эпидермальных клетках листа – минимальное.
Приобретение клеткой, тканью, органом, организмом способности реализовать определенные наследственные признаки называется детерминацией (от лат. determinare – определять).
Дифференциация начинается уже во время фазы роста растяжением: слабое растяжение – паренхимная клетка, сильное – вытянутые, палочковидные клетки колленхимы.
Выбор пути развития клетки, т.е. детерминация может быть запрограммирован или может возникнуть под влиянием внешних факторов: соседние клетки, гормоны.
Запрограммированным является неэквационное деление зиготы. Она делится на одну меньшую по размерам клетку, которая дольше сохраняет способность к делению и после серии делений превращается в собственно зародыш. Вторая, большая по размерам клетка, делится менее активно, из нее формируется первичный корешок и подвесок.
Влияние соседних клеток проявляется двояким образом: или навязывается собственный путь развития, или же, наоборот, соседние клетки оказывают блокирующий эффект, не допуская в ближайшем окружении образования аналогичных клеток. Так, например, инициальная клетка устьица делится на 2 замыкающие клетки, которые не допускают в ближайшем окружении образования подобных, формируя поле торможения благодаря, видимо, передаче каких-то неидентифицированных сигнальных веществ по плазмодесмам. Поэтому устьица (как вы видели) располагаются на определенном расстоянии друг от друга.
Дифференцированные клетки, могут снова вернуться к эмбриональной активности в результате дедифференцировки – переход специализированных неделящихся клеток снова к делению. В основе дедифференцировки лежит изменение активности генов, индуцированное каким-либо воздействием, например, при механических повреждениях ближайшие к поверхности разреза паренхимные клетки сначала увеличиваются в размерах, а затем у них начинаются митозы. Образуется масса недифференцированных клеток (раневой каллус), которые закрывают рану, а затем в них происходит новая дифференциация, называемая редифференциацией. Срастание прививок с подвоем происходит также. Во время редифференциации раневого каллуса соседние клетки навязывают собственный путь развития, поэтому происходит объединение проводящих пучков привоя и подвоя.
При вегетативном размножении стеблевыми черенками клетки нижней части стебля дедифференцируются, делятся, затем редифференцируются, образуя клетки придаточного корня.
Этот этап связан с ослаблением биосинтетических процессов и активацией гидролитических процессов.
Причины: 1) накопление повреждений в генетическом аппарате или 2) включение генетической программы старения как последнего этапа онтогенеза. Как результат этих изменений – соотношение фитогормонов, возрастание гормонов ингибиторов.
Видимые признаки старения клеток:
- закисление цитоплазмы, происходящее в результате ингибирования Н-помпы абсцизовой кислотой (изменения конформации белков);
- снижение полупроницаемости мембран из-за окисления липидов мембран активно образующимися пероксидами (из-за сдвига рН в кислую сторону).
Программированная смерть клетки называется апоптоз. Апоптоз индуцируется рядом неблагоприятных факторов внешней среды – стрессоров, например, инфекции. Зараженные клетки быстро накапливают фенольные соединения, при окислении которых образуются значительные количества перекиси водорода с которой не справляются каталазы. Клетки отмирают, это проявляется в образовании на тканях растений пятен мертвых клеток, которые называются некрозами. Роль некротических пятен – препятствие для распространения инфекции. Возникновение некрозов является формой запрограммированной смерти клеток.
Наряду с апоптозом существует генетически запрограммированная смерть органов (органоптоз) и организма в целом (феноптоз). Так, листья генетически запрограммированы для старения и смерти. Многолетние монокарпические растения после единственного акта цветения отмирают.
Источник