Лекция № 14. Деревья
- Основные определения
Дерево – связный граф без циклов. Лес (или ациклический граф) – неограф без циклов. Компонентами леса являются деревья. Теорема 14.1.Для неографаGсnвершинами без петель следующие условия эквивалентны:
- G– дерево;
- G– связной граф, содержащийn– 1 ребро;
- G– ациклический граф, содержащийn– 1 ребро;
- Любые две несовпадающие вершины графаGсоединяет единственная цепь;
- G– ациклический граф, такой, что если в него добавить одно ребро, то в нем появится ровно один цикл.
Теорема 14.2.НеографGявляется лесом тогда и только тогда, когда коранг графаv(G)=0. Висячая вершина в дереве – вершина степени 1. Висячие вершины называются листьями, все остальные – внутреннимивершинами. Если в дереве особо выделена одна вершина, называемая корнем, то такое дерево называется корневым, иначе – свободным. Корневое дерево можно считать орграфом с ориентацией дуг из корня или в корень. Очевидно, что для любой вершины корневого дерева, кроме корня, . Для корня
, для листьев
. Вершины дерева, удаленные на расстояние k (в числе дуг) от корня, образуют k-й ярус (уровень) дерева. Наибольшее значение k называется высотой дерева. Если из какой-либо вершины корневого дерева выходят дуги, то вершины на концах этих дуг называют сыновьями (в английской литературе – дочери (daughter)).
- Центроид дерева
Ветвь к вершине v дерева – это максимальный подграф, содержащий v в качестве висячей вершины. Вес вершиныk – наибольший размер ее ветвей. Центроид (или центр масс) дерева C – множество вершин с наименьшим весом: C = v| c(v) =
>. Вес любого листа дерева равен размеру дерева. Высота дерева с корнем, расположенным в центроиде, не больше наименьшего веса его вершин. Свободное дерево порядка n с двумя центроидами имеет четное количество вершин, а вес каждого центроида равен n/2. Теорема 14.3 (Жордана).Каждое дерево имеет центроид, состоящий из одной или двух смежных вершин.Пример 14.1. Найти наименьший вес вершин дерева, изображенного на рис. 14.1, и его центроид.
Рис. 14.1 Решение. Очевидно, что вес каждой висячей вершины дерева порядка n равен n – 1. Висячие вершины не могут составить центроид дерева, поэтому исключим из рассмотрения вершины 1, 2, 4, 6, 12, 13 и 16. Для всех остальных вершин найдем их вес, вычисляя длину (размер) их ветвей. Число ветвей вершины равно ее степени. Вершины 3, 5 и 8 имеют по две ветви, размеры которых равны 1 и 14. К вершине 7 подходят четыре ветви размером 1, 2, 2 и 10. Таким образом, ее вес
. Аналогично вычисляются веса других вершин:
,
,
. Минимальный вес вершин равен 8, следовательно, центроид дерева образуют две вершины с таким весом: 11 и 15.
- Десятичная кодировка
Деревья представляют собой важный вид графов. С помощью деревьев описываются базы данных, деревья моделируют алгоритмы и программы, их используют в электротехнике, химии. Одной из актуальных задач в эпоху компьютерных и телекоммуникационных сетей является задача сжатия информации. Сюда входит и кодировка деревьев. Компактная запись дерева, полностью описывающая его структуру, может существенно упростить как передачу информации о дереве, так и работу с ним. Существует множество способов кодировки деревьев. Рассмотрим одну из простейших кодировок помеченных деревьев с выделенным корнем – десятичную. Кодируя дерево, придерживаемся следующих правил.
- Кодировка начинается с корня и заканчивается в корне.
- Каждый шаг на одну дугу от корня кодируется единицей.
- В узле выбираем направление на вершину с меньшим номером.
- Достигнув листа, идем назад, кодируя каждый шаг нулем.
- При движении назад в узле всегда выбираем направление на непройденную вершину с меньшим номером.
Кодировка в такой форме получается достаточно компактной, однако она не несет в себе информации о номерах вершин дерева. Существуют аналогичные кодировки, где вместо единиц в таком же порядке проставляются номера или названия вершин. Есть деревья, для которых несложно вывести формулу десятичной кодировки. Рассмотрим, например, графы-звезды , являющиеся полными двудольными графами, одна из долей которых состоит из одной вершины. Другое обозначение звезд –
. На рис. 14.2 показаны звезды, а также приведены их двоичные и десятичные кодировки. Корень дерева располагается в центральной вершине звезды. Легко получить общую формулу:
. (14.1)
Рис. 14.2 Если корень поместить в любой из висячих вершин, то код
такого дерева будет выражаться большим числом. Более того, существует зависимость
. Аналогично рассматриваются и цепи (рис. 14.3). Цепи обозначаются как
.
Рис. 14.3 В звездах только два варианта расположения корня с различными десятичными кодировками. В цепи же число вариантов кодировок в зависимости от положения корня растет с увеличением n. Рассмотрим самый простой вариант, расположив корень в концевой вершине (листе). Для
получим двоичную кодировку 10 и десятичную 2, для
– 1100 и 12, для
– 111000 и 56, для
– 11110000 и 240. Общая формула для десятичной кодировки цепи с корнем в концевой вершине имеет вид
. (14.2) Пример 14.2. Записать десятичный код дерева, изображенного на рис. 14.4, с корнем в вершине 3.
Рис. 14.4 Решение. На основании правила кодировки, двигаясь по дереву, проставим в код единицы и нули. При движении из корня 3 к вершине 7 проходим четыре ребра. В код записываем четыре единицы: 1111. Возвращаясь от вершины 7 к вершине 2 (до ближайшей развилки), проходим три ребра. Записываем в код три нуля: 000. От вершины 2 к 5 и далее к 8 (меньший номер): 11; от 8 назад к 5 и от 5 к 9: 01; от 9 к корню 3: 000. И, наконец, от 3 к 6 и обратно: 10. В итоге, собирая все вместе, получим двоичный код дерева: 1 111 000 110 100 010. Разбивая число на тройки, переводим полученное двоичное представление в восьмеричное. Получаем
. Затем переводим это число в десятичное:
.
Для продолжения скачивания необходимо пройти капчу:
Источник
8. Остовы и деревья
Понятие дерева широко используется во многих областях математики и информатики. Например, как инструмент при вычислениях, как удобный способ хранения данных, способ сортировки или поиска данных.
Достаточно развитое генеалогическое дерево образует дерево.
Типичное частичное организационное дерево для университета.
Если дерево имеет хотя бы одно ребро, оно имеет две вершины со степенью 1. Вершины со степенью 1 называются листьями. Другие вершины называются внутренними вершинами.
Предположим, что дерево представляет физический объект, подвижный в вершинах, и подвесим дерево за одну из его вершин:
Если подвесить за вершину V3 или V4
Вершина в верхней части называется корнем дерева, если корень определен, то дерево называется корневым. При необходимости корневое дерево Т можно заменить на ориентированное корневое дерево Т’, порожденное корневым деревом Т.
Если корень выбран, уровень вершины V определяется длиной единственного пути из корня в вершину V. Высотой дерева называется длина самого длинного пути от корня дерева до листа.
Если рассматривается корневое ориентированное дерево Т’, порожденное данным корневым деревом Т, тогда вершина u называется родителем вершины v; a v называется сыном вершины u, если существует ориентированное ребро из u в v.
Если u — родитель v и v1, тогда v и v1 называются братьями.
Если существует ориентированный путь из вершины u в вершину v, тогда u называется предком вершины v, a v называется потомком вершины u.
Если наибольшая из степеней выхода для вершин дерева равна m, тогда дерево называется m — арным деревом.
В частном случае, когда m = 2, дерево называется бинарным деревом.
В каждом бинарном дереве каждый сын родителя обозначается либо как левый сын, либо как правый сын (но не то и другое одновременно).
Связный граф G(V,E), не имеющий циклов, называется деревом.
ТЕОРЕМА (основные свойства деревьев):
Пусть граф G(V,E) имеет n вершин. Тогда следующие утверждения эквивалентны:
- G является деревом;
- G не содержит циклов и имеет n-1 рёбер;
- G связен и имеет n-1 рёбер;
- G связен, но удаление » ребра нарушает связность;
- » две вершины графа G соединены ровно одним путём;
- G не имеет циклов, но добавление » ребра порождает ровно один цикл.
Ориентированное дерево представляет собой ориентированный граф без циклов, в котором полустепень захода каждой вершины (за исключением одной, например v1) не больше 1, а полустепень захода вершины v1 (называемой также корнем) равна нулю. Вершину v ордерева называют потомком вершины u, если $ путь из u в v. В этом же случае вершину u называют предком вершины v. Вершину, не имеющую потомков, называют листом. Высота ордерева – это наибольшая длина пути из корня в лист. Уровень вершины ордерева – длина пути из корня в эту вершину. Ордерево называют бинарным, если полустепень исхода любой его вершины не превосходит 2. Пусть задан неориентированный граф. Остовным деревом (остовом) связного графа называется любой его остовный подграф, являющийся деревом.
Граф и два его остовных дерева (удаленные ребра показаны пунктиром).
Задачи о кратчайших расстояниях на графах.
- Построение минимального остовного дерева (кратчайшей связывающей сети) – соединение всех узлов сети с помощью путей наименьшей длины.
- Задача о нахождении дерева кратчайших расстояний – нахождение кратчайшего пути из одной вершины в любую другую.
- Построение матрицы кратчайших расстояний – нахождение кратчайших путей для любой пары вершин.
Необходимо проложить линии коммуникаций (дороги, линии связи, электропередач и т.п.) между n заданными «точечными» объектами, при условии: во-первых, известны «расстояния» между каждой парой объектов (это может быть геометрическое расстояние или стоимость прокладки коммуникаций между ними), во-вторых, объекты могут быть связаны как непосредственно, так и с участием произвольного количества промежуточных объектов. При допущении, что разветвления возможны только в этих же n объектах, задача сводится к нахождению кратчайшего остовного дерева (SST — shortest spanning tree, или MST — minimal spanning tree) во взвешенном графе, вершины которого соответствуют заданным объектам, а веса ребер равны «расстояниям» между ними. Определение.Весостовного дерева взвешенного графа G равен сумме весов, приписанных ребрам остовного дерева. Будем обозначать (T). Минимальным остовным деревом (МОД) называется такое остовное дерево графа G, что вес T меньше или равен весу любого другого остовного дерева графа G. Вес минимального остовного дерева будем обозначать min(T). Задача 1:найти кратчайшее остовное дерево (минимальный покрывающий остов) взвешенного графа. Пусть дан неориентированный связный граф со взвешенными ребрами. Вес ребра (xi,xj) обозначим cij. Из всех остовов графа необходимо найти один, у которого сумма весов на ребрах наименьшая. Стоимость остовного дерева вычисляется как сумма стоимостей всех рёбер, входящих в это дерево. Построение остова графа G, имеющего наименьший вес, имеет широкое применение при решении некоторого класса задач прикладного характера. Например: Пусть, например, G=(V, E, ) служит моделью железнодорожной сети, соединяющей пункты v1, v2, …, vnV, а (vi, vj) – расстояние между пунктами vi и vj. Требуется проложить сеть телеграфных линий вдоль железнодорожной сети так, чтобы все пункты v1, v2, …, vn были связаны между собой телеграфной сетью, протяженность которой была бы наименьшей. Рассмотрим два способа построения минимального остовного дерева взвешенного графа: алгоритм Крускала и алгоритм Прима. Алгоритм Крускала: 1) Выбрать в графе G ребро e минимального веса, не принадлежащее множеству E и такое, что его добавление в E не создает цикл в дереве T. 2) Добавить это ребро во множество ребер E. 3) Продолжить, пока имеются ребра, обладающие указанными свойствами. Пример. Для данного взвешенного графа найти минимальное корневое остовное дерево, используя алгоритм Крускала. Определить высоту построенного дерева.
Алгоритм Крускала. Выбираем ребро с минимальным весом. Это ребро, (
,
) с весом, равным 4. Пусть вершина
будет корнем дерева. Далее выбираем ребра, инцидентные вершинам
,
и имеющие минимальный вес. Это ребро (
,
) с весом 5. Затем к вершине
присоединяем ребро (
,
) с весом 7. Далее, добавляем ребро (
,
) с весом 7 и ребро (
,
) с весом 6. Минимальный вес построенного дерева равен: min(T)=4+5+7+7+6=29.
Источник