Дерево какая часть объекта

Дерево как структура данных

Какую выгоду можно извлечь из такой структуры данных, как дерево? В этой статье мы расскажем о данных в виде дерева, рассмотрим основные определения, которые следует знать, а также узнаем, как и зачем используется дерево в программировании. Спойлер: бинарные деревья часто применяют для поиска информации в базах данных, для сортировки данных, для проведения вычислений, для кодирования и в других случаях. Но давайте обо всем по порядку.

Основные термины

Дерево — это, по сути, один из частных случаев графа. Древовидная модель может быть весьма эффективна в случае представления динамических данных, особенно тогда, когда у разработчика стоит цель быстрого поиска информации, в тех же базах данных, к примеру. Еще древом называют структуру данных, которая представляет собой совокупность элементов, а также отношений между этими элементами, что вместе образует иерархическую древовидную структуру.

Каждый элемент — это вершина или узел дерева. Узлы, соединенные направленными дугами, называются ветвями. Начальный узел — это корень дерева (корневой узел). Листья — это узлы, в которые входит 1 ветвь, причем не выходит ни одной.

Общую терминологию можно посмотреть на левой и правой части картинки ниже:

Какие свойства есть у каждого древа:

— существует узел, в который не входит ни одна ветвь;

— в каждый узел, кроме корневого узла, входит 1 ветвь.

На практике деревья нередко применяют, изображая различные иерархии. Очень популярны, к примеру, генеалогические древа — они хорошо известны. Все узлы с ветвями, исходящими из единой общей вершины, являются потомками, а сама вершина называется предком (родительским узлом). Корневой узел не имеет предков, а листья не имеют потомков.

Также у дерева есть высота (глубина). Она определяется числом уровней, на которых располагаются узлы дерева. Глубина пустого древа равняется нулю, а если речь идет о дереве из одного корня, тогда единице. В данном случае на нулевом уровне может быть лишь одна вершина – корень, на 1-м – потомки корня, на 2-м – потомки потомков корня и т. д.

Ниже изображен графический вывод древа с 4-мя уровнями (дерево имеет глубину, равную четырем):

Следующий термин, который стоит рассмотреть, — это поддерево. Поддеревом называют часть древообразной структуры, которую можно представить в виде отдельного дерева.

Идем дальше. Древо может быть упорядоченным — в данном случае ветви, которые исходят из каждого узла, упорядочены по некоторому критерию.

Степень вершины в древе — это число ветвей (дуг), выходящих из этой вершины. Степень равняется максимальной степени вершины, которая входит в дерево. В этом случае листьями будут узлы, имеющие нулевую степень. По величине степени деревья бывают:

Читайте также:  Деревьев проверяемая безударная гласная

— двоичные (степень не больше двух);

— сильноветвящиеся (степень больше двух).

Деревья — это рекурсивные структуры, ведь каждое поддерево тоже является деревом. Каждый элемент такой рекурсивной структуры является или пустой структурой, или компонентом, с которым связано конечное количество поддеревьев.

Когда мы говорим о рекурсивных структурах, то действия с ними удобнее описывать посредством рекурсивных алгоритмов.

Обход древа

Чтобы выполнить конкретную операцию над всеми вершинами, надо все эти узлы просмотреть. Данную задачу называют обходом дерева. То есть обход представляет собой упорядоченную последовательность узлов, в которой каждый узел встречается лишь один раз.

В процессе обхода все узлы должны посещаться в некотором, заранее определенном порядке. Есть ряд способов обхода, вот три основные:

— прямой (префиксный, preorder);

— симметричный (инфиксный, inorder);

— обратный (постфиксный, postorder).

Существует много древовидных структур данных: двоичные (бинарные), красно-черные, В-деревья, матричные, смешанные и пр. Поговорим о бинарных.

Бинарные (двоичные) деревья

Бинарные имеют степень не более двух. То есть двоичным древом можно назвать динамическую структуру данных, где каждый узел имеет не большое 2-х потомков. В результате двоичное дерево состоит из элементов, где каждый из элементов содержит информационное поле, а также не больше 2-х ссылок на различные поддеревья. На каждый элемент древа есть только одна ссылка.

У бинарного древа каждый текущий узел — это структура, которая состоит из 4-х видов полей. Какие это поля:

— информационное (ключ вершины);

— служебное (включена вспомогательная информация, однако таких полей может быть несколько, а может и не быть вовсе);

— указатель на правое поддерево;

— указатель на левое поддерево.

Самый удобный вид бинарного древа — бинарное дерево поиска.

Что значит древо в контексте программирования?

Мы можем долго рассуждать о математическом определении древа, но это вряд ли поможет понять, какие именно выгоды можно извлечь из древовидной структуры данных. Тут важно отметить, что древо является способом организации данных в форме иерархической структуры.

В каких случаях древовидные структуры могут быть полезны при программировании:

  1. Когда данная иерархия существует в предметной области разрабатываемой программы. К примеру, программа должна обрабатывать генеалогическое древо либо работать со структурой каталогов. В таких ситуациях иногда есть смысл сохранять между объектами программы существующие иерархические отношения. В качестве примера можно вывести древо каталогов операционной системы UNIX:
  • Когда между объектами, которые обрабатывает программа, отношения иерархии не заданы явно, но их можно задать, что сделает обработку данных удобнее. Как тут не вспомнить разработку парсеров либо трансляторов, где весьма полезным может быть древо синтаксического разбора?
  • А сейчас очевидная вещь: поиск объектов более эффективен, когда объекты упорядочены, будь то те же базы данных. К примеру, поиск значения в неструктурированном наборе из тысячи элементов потребует до тысячи операций, тогда как в упорядоченном наборе может хватить всего дюжины. Вывод прост: раз иерархия — эффективный способ упорядочивания объектов, почему же не использовать древовидную иерархию для ускорения поиска узлов со значениями? Так и происходит: если вспомнить бинарные деревья, то на практике их можно применять в следующих целях:
Читайте также:  Резьба по дереву моделирование

— поиск данных в базах данных (специально построенных деревьях);

— сортировка и вывод данных;

— вычисления арифметических выражений;

— кодирование по методу Хаффмана и пр.

Источник

Дерево (структура данных)

Узел является экземпляром одного из двух типов элементов графа, соответствующим объекту некоторой фиксированной природы. Узел может содержать значение, состояние или представление отдельной информационной структуры или самого дерева. Каждый узел дерева имеет ноль или более узлов-потомков, которые располагаются ниже по дереву (по соглашению, деревья ‘растут’ вниз, а не вверх, как это происходит с настоящими деревьями). Узел, имеющий потомка, называется узлом-родителем относительно своего потомка (или узлом-предшественником, или Корневые узлы [ ]

Самый верхний узел дерева называется корневым узлом. ‘Быть самым верхним узлом’ подразумевает отсутствие у корневого узла предков. Это узел, на котором начинается выполнение большинства операций над деревом (хотя некоторые алгоритмы начинают выполнение с «листов» и выполняются, пока не достигнут корня). Все прочие узлы могут быть достигнуты путём перехода от корневого узла по рёбрам (или ссылкам). (Согласно формальному определению, каждый подобный путь должен быть уникальным). В диаграммах он обычно изображается на самой вершине. В некоторых деревьях, например, Листовые узлы [ ]

Узлы самого нижнего уровня дерева называются Внутренние узлы [ ]

Внутренний узел — любой Поддеревья [ ]

Поддерево — часть деревообразной структуры данных, которая может быть представлено в виде отдельного дерева. Любой узел дерева T вместе со всеми его узлами-потомками является поддеревом дерева T. Для любого узла поддерева либо должен быть путь в корневой узел этого поддерева, либо сам узел должен являться корневым. Т.е. поддерево связано с корневым узлом целым деревом, а отношения поддерева со всеми прочими узлами определяются через понятие соответствующее поддерево (по аналогии с термином «соответствующее Упорядочивание деревьев [ ]

Существует два основных типа деревьев. В натуральные числа) называется деревом с именованными рёбрами или упорядоченным деревом со структурой данных, заданной перед именованием и называемой структурой данных упорядоченного дерева.

Упорядоченные деревья являются наиболее распространёнными среди древовидных структур. Двоичное дерево поиска — одно из разновидностей упорядоченного дерева.

Представление деревьев [ ]

Существует множество различных способов представления деревьев. Наиболее общий способ представления изображает узлы как записи, расположенные в динамически выделяемой памяти с указателями на своих потомков, предков (или и тех и других), или как элементы Деревья как графы [ ]

Читайте также:  Ювелирное дерево своими руками

  • Перебор всех элементов дерева
  • Перебор ветви дерева
  • Поиск элемента
  • Вставка нового элемента в определённую позицию
  • Удаление элемента
  • Удаление ветви дерева (называется Общее применение [ ]

Прочие деревья [ ]

  • B-дерево ( B+ дерево , R-дерево
  • Список с пропусками
  • T-дерево
  • T-пирамида
  • Ссылки [ ]
  • ISBN 0-201-89683-4 . Section 2.3: Trees, pp.308–423.
  • Томас Кормен , Клиффорд Штайн . Introduction to Algorithms , Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7 . Section 10.4: Representing rooted trees, pp.214–217. Chapters 12–14 (Binary Search Trees, Red-Black Trees, Augmenting Data Structures), pp.253–320.

Дополнительные источники [ ]

Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Дерево (структура данных). Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .

Источник

Деревья

Дерево — это нелинейная иерархическая структура данных. Она состоит из узлов и ребер, которые соединяют узлы.

дерево_1.png

Зачем нужны деревья

Другие структуры данных, например, массивы, списки, стеки и очереди, линейные. Это значит, что данные в них хранятся последовательно. Когда мы выполняем любую операцию в линейной структуре данных, временная сложность растет с увеличением размера данных. В современном мире это не очень круто.

Разные древовидные структуры позволяют быстрее и легче получать доступ к данным, поскольку дерево — структура нелинейная.

Части дерева

  • Узел — это объект, в котором есть ключ или значение и указатели на дочерние узлы.
    Узлы, у которых нет дочерних узлов, называют листами или терминальными узлами.
    Узлы, у которых есть хотя бы один дочерний узел, называются внутренними.
  • Ребро связывает два узла.
  • Корень — это самый верхний узел дерева. Его ещё иногда называют корневым узлом.

дерево_2 (1).png

Другие понятия

  • Высота узла — это максимальная длина пути от этого узла к самому нижнему узлу (листу).
  • Глубина вложенности узла — длина пути от корня до этого узла.
  • Высота дерева — это высота корневого узла или глубина самого глубокого узла.
  • Степень узла — это общее количество ребер, которые соединены с этим узлом.

дерево_3.png

  • Лес — множество непересекающихся деревьев. Например, если «срезать» корень, получится лес.

дерево_4.png

Виды деревьев

Обход дерева

Чтобы выполнить какую-либо операцию с деревом, нужно добраться до определенного узла. Для этого и существуют алгоритмы обхода дерева. Они помогают «дойти» до необходимого узла.

Где используются

  • Деревья двоичного поиска помогают быстро проверить наличие элемента в наборе.
  • Куча — это тоже своеобразное дерево. Кучи используют в алгоритме сортировки кучей.
  • Префиксные деревья используются в маршрутизаторах, они хранят информацию о маршруте.
  • Большинство популярных баз данных основаны на B-деревья и T-деревья.
  • Компиляторы используют абстрактное синтаксическое дерево, чтобы находить синтаксические ошибки в ваших программах.

СodeСhick.io — простой и эффективный способ изучения программирования.

2023 © ООО «Алгоритмы и практика»

Источник

Оцените статью