Динамические структуры данных: бинарные деревья
Аннотация: В лекции рассматриваются определения, свойства и виды деревьев, элементы, характеристики и способы объявления деревьев в программах, основные операции над элементами деревьев, понятие и виды обходов деревьев, приводятся примеры реализации основных операций над бинарными деревьями в виде рекурсивных функций.
Цель лекции: изучить понятие, формирование, особенности доступа к данным и работы с памятью в бинарных деревьях, научиться решать задачи с использованием рекурсивных функций и алгоритмов обхода бинарных деревьев в языке C++.
Дерево является одним из важнейших и интересных частных случаев графа. Древовидная модель оказывается довольно эффективной для представления динамических данных с целью быстрого поиска информации .
Деревья являются одними из наиболее широко распространенных структур данных в информатике и программировании, которые представляют собой иерархические структуры в виде набора связанных узлов.
Дерево – это структура данных , представляющая собой совокупность элементов и отношений, образующих иерархическую структуру этих элементов ( рис. 31.1). Каждый элемент дерева называется вершиной (узлом) дерева. Вершины дерева соединены направленными дугами, которые называют ветвями дерева. Начальный узел дерева называют корнем дерева, ему соответствует нулевой уровень. Листьями дерева называют вершины, в которые входит одна ветвь и не выходит ни одной ветви.
Каждое дерево обладает следующими свойствами:
- существует узел, в который не входит ни одной дуги (корень);
- в каждую вершину, кроме корня, входит одна дуга.
Деревья особенно часто используют на практике при изображении различных иерархий. Например, популярны генеалогические деревья.
Все вершины, в которые входят ветви, исходящие из одной общей вершины, называются потомками, а сама вершина – предком. Для каждого предка может быть выделено несколько. Уровень потомка на единицу превосходит уровень его предка. Корень дерева не имеет предка, а листья дерева не имеют потомков.
Высота (глубина) дерева определяется количеством уровней, на которых располагаются его вершины. Высота пустого дерева равна нулю, высота дерева из одного корня – единице. На первом уровне дерева может быть только одна вершина – корень дерева , на втором – потомки корня дерева, на третьем – потомки потомков корня дерева и т.д.
Поддерево – часть древообразной структуры данных, которая может быть представлена в виде отдельного дерева.
Степенью вершины в дереве называется количество дуг, которое из нее выходит. Степень дерева равна максимальной степени вершины, входящей в дерево . При этом листьями в дереве являются вершины, имеющие степень нуль. По величине степени дерева различают два типа деревьев:
Упорядоченное дерево – это дерево , у которого ветви, исходящие из каждой вершины, упорядочены по определенному критерию.
Деревья являются рекурсивными структурами, так как каждое поддерево также является деревом. Таким образом, дерево можно определить как рекурсивную структуру, в которой каждый элемент является:
Действия с рекурсивными структурами удобнее всего описываются с помощью рекурсивных алгоритмов.
Списочное представление деревьев основано на элементах, соответствующих вершинам дерева. Каждый элемент имеет поле данных и два поля указателей: указатель на начало списка потомков вершины и указатель на следующий элемент в списке потомков текущего уровня. При таком способе представления дерева обязательно следует сохранять указатель на вершину, являющуюся корнем дерева .
Для того, чтобы выполнить определенную операцию над всеми вершинами дерева необходимо все его вершины просмотреть. Такая задача называется обходом дерева.
Обход дерева – это упорядоченная последовательность вершин дерева, в которой каждая вершина встречается только один раз.
При обходе все вершины дерева должны посещаться в определенном порядке. Существует несколько способов обхода всех вершин дерева. Выделим три наиболее часто используемых способа обхода дерева ( рис. 31.2):
Существует большое многообразие древовидных структур данных. Выделим самые распространенные из них: бинарные (двоичные) деревья, красно-черные деревья, В-деревья, АВЛ-деревья , матричные деревья, смешанные деревья и т.д.
Бинарные деревья
Бинарные деревья являются деревьями со степенью не более двух.
Бинарное (двоичное) дерево – это динамическая структура данных , представляющее собой дерево , в котором каждая вершина имеет не более двух потомков ( рис. 31.3). Таким образом, бинарное дерево состоит из элементов, каждый из которых содержит информационное поле и не более двух ссылок на различные бинарные поддеревья. На каждый элемент дерева имеется ровно одна ссылка .
Каждая вершина бинарного дерева является структурой, состоящей из четырех видов полей. Содержимым этих полей будут соответственно:
- информационное поле (ключ вершины);
- служебное поле (их может быть несколько или ни одного);
- указатель на левое поддерево ;
- указатель на правое поддерево .
По степени вершин бинарные деревья делятся на ( рис. 31.4):
- строгие – вершины дерева имеют степень ноль (у листьев) или два (у узлов);
- нестрогие – вершины дерева имеют степень ноль (у листьев), один или два (у узлов).
В общем случае у бинарного дерева на k -м уровне может быть до 2 k-1 вершин. Бинарное дерево называется полным, если оно содержит только полностью заполненные уровни. В противном случае оно является неполным.
Дерево называется сбалансированным, если длины всех путей от корня к внешним вершинам равны между собой. Дерево называется почти сбалансированным, если длины всевозможных путей от корня к внешним вершинам отличаются не более, чем на единицу.
Бинарное дерево может представлять собой пустое множество . Бинарное дерево может выродиться в список ( рис. 31.5).
Структура дерева отражается во входном потоке данных так: каждой вводимой пустой связи соответствует условный символ, например, ‘*’ (звездочка). При этом сначала описываются левые потомки, затем, правые. Для структуры бинарного дерева , представленного на следующем рисунке 6, входной поток имеет вид: ABD*G***CE**FH**J** .
Бинарные деревья могут применяться для поиска данных в специально построенных деревьях ( базы данных ), сортировки данных, вычислений арифметических выражений , кодирования (метод Хаффмана) и т.д.
Источник
4. Рекурсивные структуры данных
Привет, сегодня поговорим про рекурсивные структуры данных, обещаю рассказать все что знаю. Для того чтобы лучше понимать что такое рекурсивные структуры данных , настоятельно рекомендую прочитать все из категории Структуры данных. Рассмотрим рекурсивные алгоритмы и рекурсивные структуры данных .
Рекурсия — процесс, протекание которого связано с обращением к самому себе (к этому же процессу).
Пример рекурсивной структуры данных — структура данных, элементы которой являются такими же структурами данных (рис. 4.1).
4.1 Деревья
Дерево — нелинейная связанная структура данных
(рис. 4.2).
Дерево характеризуется следующими признаками:
— дерево имеет 1 элемент, на которого нет ссылок от других элементов. Этот элемент называется корнем дерева;
— в дереве можно обратиться к любому элементу путем прохождения конечного числа ссылок (указателей);
— каждый элемент дерева связан только с одним предыдущим элементом, Любой узел дерева может быть промежуточным либо терминальным (листом). На рис. 4.2 промежуточными являются элементы M1, M2, листьями — A, B, C, D, E. Характерной особенностью терминального узла является отсутствие ветвей.
Высота — это количество уровней дерева. У дерева на рис. 4.2 высота равна двум.
Количество ветвей, растущих из узла дерева, называется степенью исхода узла (на рис. 4.2 для M1 степень исхода 2, для М2 — 3). По степени исхода классифицируются деревья:
1) если максимальная степень исхода равна m, то это — m-арное дерево;
2) если степень исхода равна либо 0, либо m, то это — полное m-арное дерево;
3) если максимальная степень исхода равна 2, то это — бинарное дерево;
4) если степень исхода равна либо 0, либо 2, то это — полное бинарное дерево.
Для описание связей между узлами дерева применяют также следующую терминологию: М1 — “отец” для элементов А и В. А и В — “сыновья” узла М1.
4.1.1 Представление деревьев
Наиболее удобно деревья представлять в памяти ЭВМ в виде связанных списков. Элемент списка должен содержать информационные поля, в которых содержится значение узла и степень исхода, а также — поля-указатели, число которых равно степени исхода (рис4.3). То есть, любой указатель элемента ориентирует данный элемент-узел с сыновьями этого узла.
4.2 Бинарные деревья
Бинарные деревья являются наиболее используемой разновидностью деревьев.
Согласно представлению деревьев в памяти ЭВМ каждый элемент будет записью, содержащей 4 поля. Значения этих полей будут соответственно ключ записи, ссылка на элемент влево-вниз, на элемент вправо-вниз и на текст записи.
При построении необходимо помнить, что левый сын имеет ключ меньший, чем у отца, а значение ключа правого сына больше значения ключа отца. Например, построим бинарное дерево из следующих элементов: 50, 46, 61, 48, 29, 55, 79. Оно имеет следующий вид:
Получили упорядоченное бинарное дерево с одинаковым числом уровней в левом и правом поддеревьях. Это — идеально сбалансированное дерево, то есть дерево, в котором левое и правое поддеревья имеют уровни, отличающиеся не более чем на единицу.
Для создания бинарного дерева надо создавать в памяти элементы типа (рис . Об этом говорит сайт https://intellect.icu . 4.5):
Операция V = MakeTree(Key, Rec) — создает элемент (узел дерева) с двумя указателями и двумя полями (ключевым и информационным) .
4.2.1 Сведение m-арного дерева к бинарному
1.В любом узле дерева отсекаются все ветви, кроме крайней левой, соответствующей старшим сыновьям.
2.Соединяется горизонтальными линиями все сыновья одного родителя.
3. Старшим сыном в любом узле полученной структуры будет узел, находящийся под данным узлом (если он есть).
Последовательность действий алгоритма приведена на рис. 4.6.
Основные операции с деревьями
Для выполнения обхода дерева необходимо выполнить три процедуры:
В зависимости от того, в какой последовательности выполняются эти три процедуры, различают три вида обхода.
1.Обход сверху вниз. Процедуры выполняются в последовательности
2.Обход слева направо. Процедуры выполняются в последовательности
3.Обход снизу вверх. Процедуры выполняются в последовательности
В зависимости от того, какой по счету заход в узел приводит к обработке узла, получается реализация одного из трех видов обхода. Если обработка идет после первого захода в узел, то сверху вниз, если после второго, то слева направо, если после третьего, то снизу вверх (см. рис. 4. 7).
Операция исключения поддерева. Необходимо указать узел, к которому подсоединяется исключаемое поддерево и индекс этого поддерева. Исключение поддерева состоит в том, что разрывается связь с исключаемым поддеревом, т. е. указатель элемента устанавливается в nil, а степень исхода данного узла уменьшается на единицу.
Вставка поддерева — операция, обратная исключению. Надо знать индекс включаемого поддерева, узел, к которому подвешивается дерево, установить указатель этого узла на корень поддерева, а степень исхода данного узла увеличивается на единицу. При этом в общем случае необходимо произвести перенумерацию сыновей узла, к которому подвешивается поддерево.
Алгоритм вставки и удаления рассмотрен в главе 5.
4.2.3 Алгоритм создания дерева бинарного поиска
Пусть заданы элементы с ключами: 14, 18, 6, 21, 1, 13, 15. После выполнения нижеприведенного алгоритма получится дерево, изображенное на рис.4.6. Если обойти полученное дерево слева направо, то получим упорядочивание: 1, 6, 13, 14, 15, 18, 21.
Источник