Дерево решений теория вероятности

Дерево решений

На этой странице вы найдете решенные типовые задания из контрольных, лабораторных и практических работ по теории игр на тему «Дерево решений» (изучаются в курсах теории рисков, инвестиций, менеджменте, ТПР, МОР, ЭММ и т.п.).

Чаще всего метод дерева решений используют в сложных, но поддающихся классификации задачах принятия решений, когда перед нами есть несколько альтернативных «решений» (проектов, выходов, стратегий), каждое из которых в зависимости от наших действий или действий других лиц (а также глобальных сил, вроде рынка, природы и т.п.) может давать разные последствия (результаты).

Задача состоит в том, чтобы правильно отобразить все возможные варианты развития ситуации (ветви дерева) и конечные результаты, вычислить некоторые показатели (например, ожидаемая прибыльность проекта, затраты и т.п.) и на основе полученных данных принять решение и выборе нужной линии поведения.

Принятие решений с помощью дерева возможных вариантов производится поэтапно:

  1. Построение дерева решений (графа без циклов). Дерево строится по определенным правилам: вершины альтернативных решений, вершины событий, дуги решений, конечные решения — листья вводятся и обозначаются определенным образом в нужном порядке.
  2. Анализ дерева решений : подсчет вероятностей и математических ожиданий (стоимостных оценок решения, EMV), расчет оптимистического и пессимистического прогноза, выбор оптимального решения.

Примеры решений задач: Дерево решений

Задача 1. Вы рассматриваете перспективы создания новой консалтинговой службы. Объем необходимых вложений на начальном этапе $200 тыс. Существует 60%-ная вероятность, что спрос будет высоким в 1-й год. Если спрос будет высоким в первый год, то в последующие годы вероятности высокого и низкого спроса составят 80% и 20% соответственно. Если спрос будет низким в 1-й год, то в последующие годы вероятности высокого и низкого спроса составят 40% и 60% соответственно. При высоком спросе прогнозируемые доходы составят 500 тыс. дол. в год; при низком спросе прогнозируемые доходы равны 300 тыс. дол. в год. Вы можете прекратить предоставлять услуги в любой момент. Затраты, помимо связанных с использованием компьютера, прогнозируются в размере 140 тыс. дол. в год, вне зависимости от уровня спроса.

Если Вы решите не вкладывать деньги в консалтинговую службу, то сможете вложить их на практически безрисковой основе под 20% в год.
Если будет решено организовать консалтинговую службу, Вам необходимо будет решить вопрос с проведением компьютерных расчетов, составляющих основу деятельности. Один возможный вариант — купить сервер.
Срок морального устаревания его 5 лет. Затраты будут состоять из первоначальных расходов в размере 150 тыс. долларов и ежегодных расходов на эксплуатацию в размере 20 тыс.
Альтернативный вариант — арендовать компьютерные ресурсы по мере необходимости. В этом случае затраты на аренду будут пропорциональны спросу и составят 30% доходной части за вычетом оговоренных постоянных расходов в 140 тыс. Во всех случаях никаких других издержек нет.

a. Постройте «древо решений», иллюстрирующее эти варианты и охватывающее 3 года.
b. Стоит организовать консалтинговую службу или безрисковый доход выгоднее? Рассмотрите итоги деятельности за два и три года.
c. Что лучше — купить компьютер или арендовать?
d. Предположим, что после 3 лет деятельности вы сможете продать службу, как отдельный бизнес в среднем за 350 тыс. долларов. Какому ежегодному проценту прироста соответствует полученный вами доход?
e. Четко сформулируйте любые дополнительные допущения, которые вам потребуется сделать.

Читайте также:  Понятие дерева синтаксического разбора

Задача 2. Фермер может выращивать либо кукурузу, либо соевые бобы. Вероятность того, что цены на будущий урожай этих культур повысятся, останутся на том же уровне или понизятся, равна соответственно 0,25, 0,30 и 0,45. Если цены возрастут, урожай кукурузы даст 30 000 долл. чистого дохода, а урожай соевых бобов — 10 000 долл. Если цены останутся неизменными, фермер лишь покроет расходы. Но если цены станут ниже, урожай кукурузы и соевых бобов приведет к потерям в 35 000 и 5 000 долл. соответственно. Постройте дерево решений. Какую культуру следует выращивать фермеру? Каково ожидаемое значение его прибыли?

Задача 3. Предприятие рассматривает варианты капитальных вложений. Первый вариант предусматривает строительство нового цеха для увеличения объема выпуска продукции стоимостью М1 = 500 млн. руб. При этом варианте возможны большой спрос (годовой доход в размере R1 = 230 млн. руб. в течение 5 последующих лет) с вероятностью p1 = 0,7 и низкий спрос (ежегодные убытки R2 = 90 млн. руб. с вероятностью p2 = 0,3.
Второй вариант предусматривает создание нового предприятия для выпуска новой продукции Стоимостью М1 = 700 млн. руб. При этом варианте возможны большой спрос (годовой доход в размере R1 = 450 млн. руб. в течение 5 последующих лет) с вероятностью p1 = 0,6 и низкий спрос (ежегодные убытки R2 = 150 млн. руб. с вероятностью p2 = 0,4.
При третьем варианте предлагается отложить инвестиции на 1 год для сбора дополнительной информации, которая может быть позитивной или негативной с вероятностью p1 = 0,8 и p2 = 0,2 соответственно. В случае позитивной информации можно осуществить инвестиции по указанным выше расценкам, в вероятности большого и низкого спроса меняются на p1 = 0,9 и p2 = 0,1 соответственно. Доходы на последующие годы остаются на том же уровне. В случае негативной информации инвестиции осуществляться не будут.
Все расчеты выражены в текущих ценах и не должны дисконтироваться. Нарисовать дерево решений. Определить наиболее эффективную последовательность действий, основываясь на ожидаемых доходах. Какова ожидаемая стоимостная оценка наилучшего решения?

Задача 4. Рассматривается проект покупки доли (пакета акций) в инвестиционном проекте. Пакет стоит 7 млн., и по завершению проект принесет доход 12 млн. с вероятностью 0,6 или ничего с вероятностью 0,4.
При этом через некоторое время будет опубликован прогноз аналитической фирмы относительно успеха этого проекта. Прогноз верен с вероятностью 0,7, то есть, равны 0,7 условные вероятности.
Однако, в случае положительного прогноза пакет порождает до 10,6 млн., а в случае отрицательного подешевеет до 3,4 млн. Требуется составить стратегию действий: покупать ли долю, или ждать прогноза, и совершать ли покупку при том или ином результате прогноза.

Читайте также:  Поталь мастер класс дерево

Задача 5. Компания «Большая нефть» хочет знать, стоит ли бурить нефтяную скважину на одном из участков, купленных ранее в перспективном месте. Бурение, проведенное на множестве соседних участков, показало, что перспективы не так уж хороши. Вероятность найти нефть на глубине не больше 400 м составляет около 50%. При этом стоимость бурения составит 1.5 млн., а стоимость нефти, за вычетом всех расходов, кроме расходов на бурение, составит 6 млн. Если нефть не найдена на малой глубине, не исключена возможность найти ее при более глубоком бурении. Расходы на бурение, вероятность найти нефть и приведенная стоимость нефти для этих случаев даны в таблице.
a. Постройте дерево решений, показывающее последовательные решения о разработке скважины, которые должна принять компания «Большая нефть». На какую среднюю прибыль компания может рассчитывать?
b. Скважину какой глубины нужно быть готовыми пробурить? (Стоит ли остановиться при достижении определенной глубины, или бурить до предельной глубины?)
c. Какова вероятность найти нефть при бурении (при необходимости) до выбранной вами предельной глубины? Какова полная вероятность найти нефть при готовности бурить до 1500 м?

Источник

Дерево вероятностей

В этой статье я покажу вам очень простой способ решения некоторых задач по теории вероятностей.
Рассмотрим задачу. Трое друзей Вася, Петя и Слава купили торт, и решили его съесть. Они разделили торт на три равных части. Внезапно появился четвертый друг Коля, и друзья решили отрезать ему по кусочку от своей доли. Вася отрезал 1/3 от своего куска, Петя 1/4, а Слава – половину. Какую часть всего торта получил в итоге Коля?

Изобразим ситуацию, описанную в задаче в виде такой схемы:

Сначала торт разрезали на три равные части, и каждому из трех друзей досталось по 1/3 торта.

Затем пришел Коля и каждый мальчик отрезал ему соответствующую часть своего куска:

Чтобы найти дробь от числа, нужно число умножить на эту дробь. То есть Вася отдает Коле *=1/9 часть торта, Петя — *=1/ часть торта, а Слава *=1/ часть торта.

1/9+1/<12 data-lazy-src=

Стекла, которые выпускает каждая фабрика делятся на бракованные и пригодные. Из стекол, которые выпускает первая фабрика 4% бракованных, и из тех, которые выпускает вторая – 1% бракованных:

Нас интересуют бракованные стекла, которые выпускаются первой или второй фабрикой. Найдем, какую часть эти стекла составляют от всех стекол:

Для вас другие записи этой рубрики:

Источник

Метод «дерева вероятностей» («дерева решений»).

«Дерево решений» представляет собой графическую модель развития инвестиционного проекта, в которой события, влияющие на инвестиционный проект, соответствуют узловым точкам, а возможные инвестиционные решения для этих событий – «ветвям» (стрелкам). Каждый сценарий развития инвестиционного проекта отражается на «дереве решений» как совокупность решений в хронологической последовательности возникновения события.

Основная цель построения дерева вероятностей — определение изменений важнейших условий реализации инвестиционного проекта и возможных колебаний чистой текущей стоимости, определение рисков инвестиционных проектов.

Этапы построения дерева решений:

— строится «ветвь» дерева, соответствующая первому параметру, например, объем реализации; она разветвляется на направления, для каждого из которых есть значение объема и вероятность его наступления, в результате получаются «ветви»;

— от каждой из полученных «ветвей» строится новое разветвление, которое соответствует изменениям второго параметра, например цены единицы продукции;

— к каждой вновь полученной «ветви» достраиваются еще «ветви», характеризующие изменение третьего параметра, например себестоимости.

Количество построенных «ветвей» дерева соответствует числу исходов, которые возможны при реализации данного проекта; по каждому исходу определяется вероятность Pi и NPVi.

Вероятность Pi определяется как произведение двух значений вероятности по каждой из полученных «ветвей». Значение NPVi находится по формуле (2.1).

Для оценки риска проекта рассчитывают среднеквадратическое отклонение (или стандартное отклонение) чистой текущей стоимостиσNPV , характеризующее степень разброса возможных результатов по проекту. Чем меньше среднеквадратическое отклонение, тем меньше риск проекта.

Для проектов, имеющих разные масштабы, лучше использовать относительный показатель – коэффициент вариации.

  1. Ожидаемая величина чистой текущей стоимости Е (NPV) находится как средневзвешенная по вероятности событий по формуле:
    (2.3)
  2. Среднеквадратическое отклонение чистой текущей стоимости определяется по формуле:

где σNPV – среднеквадратическое отклонение чистой текущей стоимости по проекту;

Рi вероятность i-гoисхода;

Е(NPV) – ожидаемое значение чистой текущей стоимости;

NPVi – значение чистой текущей стоимости дляi-гoварианта исхода.

Чем больше коэффициент вариации, тем выше риск проекта.

  1. После расчета основных показателей составляется аналитическое заключение, в котором дается ха­рактеристика уровня рискованности инвестиций на основе показателей стандартного отклонения NPV и коэффициента вариации.

Результаты анализа представляют в виде профиля риска, графически показывающего вероятность каждого возможного случая получения NPVi. Часто используют кумулятивный профиль риска. По таким графикам легко определить, с какой вероятностью капиталовложения не убыточны.

Для построения графиков сначала заполняется вспомогательная таблица 2.4, которая должна содержать исходные данные для построения профилей риска.

Аналитическая таблица оценки рисков

Источник

Оцените статью