- Отметьте все элементы которые могут присутствовать в дереве
- Граф с какими свойствами называют деревом Что такое корень дерева, ветви, листья?
- Структуры данных: бинарные деревья. Часть 1
- Зачем это нужно?
- Ну-с, приступим
- Добавление в дерево
- Лирическое отступление о плюсах и минусах функционального подхода
- Вернемся к нашим баранам
- Чем же все это полезно?
- Анонс следующих серий
- Полезные ссылки
- Деревья
- Зачем нужны деревья
- Части дерева
- Другие понятия
- Виды деревьев
- Обход дерева
- Теория графов
- Ориентированные деревья
Отметьте все элементы которые могут присутствовать в дереве
Граф с какими свойствами называют деревом Что такое корень дерева, ветви, листья?
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Структуры данных: бинарные деревья. Часть 1
Этой статьей я начинаю цикл статей об известных и не очень структурах данных а так же их применении на практике.
В своих статьях я буду приводить примеры кода сразу на двух языках: на Java и на Haskell. Благодаря этому можно будет сравнить императивный и функциональный стили программирования и увидить плюсы и минусы того и другого.
Начать я решил с бинарных деревьев поиска, так как это достаточно базовая, но в то же время интересная штука, у которой к тому же существует большое количество модификаций и вариаций, а так же применений на практике.
Зачем это нужно?
Бинарные деревья поиска обычно применяются для реализации множеств и ассоциативных массивов (например, set и map в с++ или TreeSet и TreeMap в java). Более сложные применения включают в себя ropes (про них я расскажу в одной из следующих статей), различные алгоритмы вычислительной геометрии, в основном в алгоритмах на основе «сканирующей прямой».
В этой статье деревья будут рассмотрены на примере реализации ассоциативного массива. Ассоциативный массив — обобщенный массив, в котором индексы (их обычно называют ключами) могут быть произвольными.
Ну-с, приступим
Двоичное дерево состоит из вершин и связей между ними. Конкретнее, у дерева есть выделенная вершина-корень и у каждой вершины может быть левый и правый сыновья. На словах звучит несколько сложно, но если взглянуть на картинку все становится понятным:
У этого дерева корнем будет вершина A. Видно, что у вершины D отсутствует левый сын, у вершины B — правый, а у вершин G, H, F и I — оба. Вершины без сыновей принято называть листьями.
Каждой вершине X можно сопоставить свое дерево, состоящее из вершины, ее сыновей, сыновей ее сыновей, и т.д. Такое дерево называют поддеревом с корнем X. Левым и правым поддеревьями X называют поддеревья с корнями соответственно в левом и правом сыновьях X. Заметим, что такие поддеревья могут оказаться пустыми, если у X нет соответствующего сына.
Данные в дереве хранятся в его вершинах. В программах вершины дерева обычно представляют структурой, хранящей данные и две ссылки на левого и правого сына. Отсутствующие вершины обозначают null или специальным конструктором Leaf:
Как видно из примеров, мы требуем от ключей, чтобы их можно было сравнивать между собой ( Ord a в haskell и T1 implements Comparable в java). Все это не спроста — для того, чтобы дерево было полезным данные должны храниться в нем по каким-то правилам.
Какие же это правила? Все просто: если в вершине X хранится ключ x, то в левом (правом) поддереве должны храниться только ключи меньшие (соответственно большие) чем x. Проиллюстрируем:
Что же нам дает такое упорядочевание? То, что мы легко можем отыскать требуемый ключ x в дереве! Просто сравним x со значением в корне. Если они равны, то мы нашли требуемое. Если же x меньше (больше), то он может оказаться только в левом (соответственно правом) поддереве. Пусть например мы ищем в дереве число 17:
Функция, получающая значение по ключу:
Добавление в дерево
Теперь попробуем сделать операцию добавления новой пары ключ/значение (a,b). Для этого будем спускаться по дереву как в функции get, пока не найдем вершину с таким же ключем, либо не дойдем до отсутсвующего сына. Если мы нашли вершину с таким же ключем, то просто меняем соответствующее значение. В противно случае легко понять что именно в это место следует вставить новую вершину, чтобы не нарушить порядок. Рассмотрим вставку ключа 42 в дерево на прошлом рисунке:
Лирическое отступление о плюсах и минусах функционального подхода
Если внимательно рассмотреть примеры на обоих языках, можно увидеть некоторое различие в поведении функциональной и императивной реализаций: если на java мы просто модифицируем данные и ссылки в имеющихся вершинах, то версия на haskell создает новые вершины вдоль всего пути, пройденного рекурсией. Это связано с тем, что в чисто функциональных языках нельзя делать разрушающие присваивания. Ясно, что это ухудшает производительность и увеличивает потребляемую память. С другой стороны, у такого подхода есть и положительные стороны: отсутствие побочных эффектов сильно облегчает понимание того, как функционирует программа. Более подробно об этом можно прочитать в практически любом учебнике или вводной статье про функциональное программирование.
В этой же статье я хочу обратить внимание на другое следствие функционального подхода: даже после добавления в дерево нового элемента старая версия останется доступной! За счет этого эффекта работают ropes, в том числе и в реализации на императивных языках, позволяя реализовывать строки с асимптотически более быстрыми операциями, чем при традиционном подходе. Про ropes я расскажу в одной из следующих статей.
Вернемся к нашим баранам
Теперь мы подобрались к самой сложной операции в этой статье — удалению ключа x из дерева. Для начала мы, как и раньше, найдем нашу вершину в дереве. Теперь возникает два случая. Случай 1 (удаляем число 5):
Видно, что у удаляемой вершины нет правого сына. Тогда мы можем убрать ее и вместо нее вставить левое поддерево, не нарушая упорядоченность:
Если же правый сын есть, налицо случай 2 (удаляем снова вершину 5, но из немного другого дерева):
Тут так просто не получится — у левого сына может уже быть правый сын. Поступим по-другому: найдем в правом поддереве минимум. Ясно, что его можно найти если начать в правом сыне и идти до упора влево. Т.к у найденного минимума нет левого сына, можно вырезать его по аналогии со случаем 1 и вставить его вместо удалеемой вершины. Из-за того что он был минимальным в правом поддереве, свойство упорядоченности не нарушится:
На десерт, пара функций, которые я использовал для тестирования:
Чем же все это полезно?
У читателя возможно возникает вопрос, зачем нужны такие сложности, если можно просто хранить список пар [(ключ, значение)]. Ответ прост — операции с деревом работают быстрее. При реализации списком все функции требуют O(n) действий, где n — размер структуры. (Запись O(f(n)) грубо говоря означает «пропорционально f(n)», более корректное описание и подробности можно почитать тут). Операции с деревом же работают за O(h), где h — максимальная глубина дерева (глубина — расстояние от корня до вершины). В оптимальном случае, когда глубина всех листьев одинакова, в дереве будет n=2^h вершин. Значит, сложность операций в деревьях, близких к оптимуму будет O(log(n)). К сожалению, в худшем случае дерево может выродится и сложность операций будет как у списка, например в таком дереве (получится, если вставлять числа 1..n по порядку):
К счастью, существуют способы реализовать дерево так, чтобы оптимальная глубина дерева сохранялась при любой последовательности операций. Такие деревья называют сбалансированными. К ним например относятся красно-черные деревья, AVL-деревья, splay-деревья, и т.д.
Анонс следующих серий
В следующей статье я сделаю небольшой обзор различных сбалансированных деревьев, их плюсы и минусы. В следующих статьях я расскажу о каком-нибудь (возможно нескольких) более подробно и с реализацией. После этого я расскажу о реализации ropes и других возможных расширениях и применениях сбалансированных деревьев.
Полезные ссылки
Исходники примеров целиком:
Также очень советую почитать книгу Кормен Т., Лейзерсон Ч., Ривест Р.: «Алгоритмы: построение и анализ», которая является прекрасным учебником по алгоритмам и структурам данных
Деревья
Дерево — это нелинейная иерархическая структура данных. Она состоит из узлов и ребер, которые соединяют узлы.
Зачем нужны деревья
Другие структуры данных, например, массивы, списки, стеки и очереди, линейные. Это значит, что данные в них хранятся последовательно. Когда мы выполняем любую операцию в линейной структуре данных, временная сложность растет с увеличением размера данных. В современном мире это не очень круто.
Разные древовидные структуры позволяют быстрее и легче получать доступ к данным, поскольку дерево — структура нелинейная.
Части дерева
- Узел — это объект, в котором есть ключ или значение и указатели на дочерние узлы.
Узлы, у которых нет дочерних узлов, называют листами или терминальными узлами.
Узлы, у которых есть хотя бы один дочерний узел, называются внутренними. - Ребро связывает два узла.
- Корень — это самый верхний узел дерева. Его ещё иногда называют корневым узлом.
Другие понятия
- Высота узла — это максимальная длина пути от этого узла к самому нижнему узлу (листу).
- Глубина вложенности узла — длина пути от корня до этого узла.
- Высота дерева — это высота корневого узла или глубина самого глубокого узла.
- Степень узла — это общее количество ребер, которые соединены с этим узлом.
- Лес — множество непересекающихся деревьев. Например, если «срезать» корень, получится лес.
Виды деревьев
Обход дерева
Чтобы выполнить какую-либо операцию с деревом, нужно добраться до определенного узла. Для этого и существуют алгоритмы обхода дерева. Они помогают «дойти» до необходимого узла.
Источник
Теория графов
Следующая теорема устанавливает, что два из четырех свойств – связность, ацикличность, древовидность и субцикличность – характеризуют граф как дерево.
- Для
– графа
следующие утверждения эквивалентны:
– дерево;
- Любые две несовпадающие вершины графа
соединяет единственная простая цепь;
– связный граф, и любое ребро есть мост;
– связный граф и древовидный;
– ациклический граф (лес) и древовидный;
– ациклический граф (лес) и субцикличекий;
– связный, субциклический и неполный,
;
– древовидный и субциклический, исключая
и
;
- (1->2): Если
-
Ориентированные деревья
- Ориентированным деревом (или ордеревом, или корневым деревом) называется орграф со следующими свойствами:
- существует единственный узел, в который не входит ни один другой узел. Он называется корнем ордерева;
- во все остальные узлы входит только по одному узлу;
- каждый узел достижим из корня.
- Ордерево обладает следующими свойствами:
- Концевая вершина ордерева называется листом. Путь из корня в лист называется ветвью. Длина наибольшей ветви ордерева называется высотой. Уровень узла ордерева – это расстояние отт корня до узла. Сам корень имеет уровень 0. Узлы одного уровня образуют ярус дерева.
1. ; 2. если в ордереве отменить ориентацию ребер, то получится обычное дерево; 3. для каждого узла существует единственный путь, ведущий в этот узел из корня; 4. подграф, определяемый множеством узлов, достижимых из узла
, является ордеревом с корнем
. Это ордерево называется поддеревом узла
.
Источник