Дерево вероятности решение примеров

Дерево решений

На этой странице вы найдете решенные типовые задания из контрольных, лабораторных и практических работ по теории игр на тему «Дерево решений» (изучаются в курсах теории рисков, инвестиций, менеджменте, ТПР, МОР, ЭММ и т.п.).

Чаще всего метод дерева решений используют в сложных, но поддающихся классификации задачах принятия решений, когда перед нами есть несколько альтернативных «решений» (проектов, выходов, стратегий), каждое из которых в зависимости от наших действий или действий других лиц (а также глобальных сил, вроде рынка, природы и т.п.) может давать разные последствия (результаты).

Задача состоит в том, чтобы правильно отобразить все возможные варианты развития ситуации (ветви дерева) и конечные результаты, вычислить некоторые показатели (например, ожидаемая прибыльность проекта, затраты и т.п.) и на основе полученных данных принять решение и выборе нужной линии поведения.

Принятие решений с помощью дерева возможных вариантов производится поэтапно:

  1. Построение дерева решений (графа без циклов). Дерево строится по определенным правилам: вершины альтернативных решений, вершины событий, дуги решений, конечные решения — листья вводятся и обозначаются определенным образом в нужном порядке.
  2. Анализ дерева решений : подсчет вероятностей и математических ожиданий (стоимостных оценок решения, EMV), расчет оптимистического и пессимистического прогноза, выбор оптимального решения.

Примеры решений задач: Дерево решений

Задача 1. Вы рассматриваете перспективы создания новой консалтинговой службы. Объем необходимых вложений на начальном этапе $200 тыс. Существует 60%-ная вероятность, что спрос будет высоким в 1-й год. Если спрос будет высоким в первый год, то в последующие годы вероятности высокого и низкого спроса составят 80% и 20% соответственно. Если спрос будет низким в 1-й год, то в последующие годы вероятности высокого и низкого спроса составят 40% и 60% соответственно. При высоком спросе прогнозируемые доходы составят 500 тыс. дол. в год; при низком спросе прогнозируемые доходы равны 300 тыс. дол. в год. Вы можете прекратить предоставлять услуги в любой момент. Затраты, помимо связанных с использованием компьютера, прогнозируются в размере 140 тыс. дол. в год, вне зависимости от уровня спроса.

Читайте также:  Можно ли утаптывать снег вокруг дерева 2 класс

Если Вы решите не вкладывать деньги в консалтинговую службу, то сможете вложить их на практически безрисковой основе под 20% в год.
Если будет решено организовать консалтинговую службу, Вам необходимо будет решить вопрос с проведением компьютерных расчетов, составляющих основу деятельности. Один возможный вариант — купить сервер.
Срок морального устаревания его 5 лет. Затраты будут состоять из первоначальных расходов в размере 150 тыс. долларов и ежегодных расходов на эксплуатацию в размере 20 тыс.
Альтернативный вариант — арендовать компьютерные ресурсы по мере необходимости. В этом случае затраты на аренду будут пропорциональны спросу и составят 30% доходной части за вычетом оговоренных постоянных расходов в 140 тыс. Во всех случаях никаких других издержек нет.

a. Постройте «древо решений», иллюстрирующее эти варианты и охватывающее 3 года.
b. Стоит организовать консалтинговую службу или безрисковый доход выгоднее? Рассмотрите итоги деятельности за два и три года.
c. Что лучше — купить компьютер или арендовать?
d. Предположим, что после 3 лет деятельности вы сможете продать службу, как отдельный бизнес в среднем за 350 тыс. долларов. Какому ежегодному проценту прироста соответствует полученный вами доход?
e. Четко сформулируйте любые дополнительные допущения, которые вам потребуется сделать.

Задача 2. Фермер может выращивать либо кукурузу, либо соевые бобы. Вероятность того, что цены на будущий урожай этих культур повысятся, останутся на том же уровне или понизятся, равна соответственно 0,25, 0,30 и 0,45. Если цены возрастут, урожай кукурузы даст 30 000 долл. чистого дохода, а урожай соевых бобов — 10 000 долл. Если цены останутся неизменными, фермер лишь покроет расходы. Но если цены станут ниже, урожай кукурузы и соевых бобов приведет к потерям в 35 000 и 5 000 долл. соответственно. Постройте дерево решений. Какую культуру следует выращивать фермеру? Каково ожидаемое значение его прибыли?

Читайте также:  Насекомое которое любит дерево

Задача 3. Предприятие рассматривает варианты капитальных вложений. Первый вариант предусматривает строительство нового цеха для увеличения объема выпуска продукции стоимостью М1 = 500 млн. руб. При этом варианте возможны большой спрос (годовой доход в размере R1 = 230 млн. руб. в течение 5 последующих лет) с вероятностью p1 = 0,7 и низкий спрос (ежегодные убытки R2 = 90 млн. руб. с вероятностью p2 = 0,3.
Второй вариант предусматривает создание нового предприятия для выпуска новой продукции Стоимостью М1 = 700 млн. руб. При этом варианте возможны большой спрос (годовой доход в размере R1 = 450 млн. руб. в течение 5 последующих лет) с вероятностью p1 = 0,6 и низкий спрос (ежегодные убытки R2 = 150 млн. руб. с вероятностью p2 = 0,4.
При третьем варианте предлагается отложить инвестиции на 1 год для сбора дополнительной информации, которая может быть позитивной или негативной с вероятностью p1 = 0,8 и p2 = 0,2 соответственно. В случае позитивной информации можно осуществить инвестиции по указанным выше расценкам, в вероятности большого и низкого спроса меняются на p1 = 0,9 и p2 = 0,1 соответственно. Доходы на последующие годы остаются на том же уровне. В случае негативной информации инвестиции осуществляться не будут.
Все расчеты выражены в текущих ценах и не должны дисконтироваться. Нарисовать дерево решений. Определить наиболее эффективную последовательность действий, основываясь на ожидаемых доходах. Какова ожидаемая стоимостная оценка наилучшего решения?

Задача 4. Рассматривается проект покупки доли (пакета акций) в инвестиционном проекте. Пакет стоит 7 млн., и по завершению проект принесет доход 12 млн. с вероятностью 0,6 или ничего с вероятностью 0,4.
При этом через некоторое время будет опубликован прогноз аналитической фирмы относительно успеха этого проекта. Прогноз верен с вероятностью 0,7, то есть, равны 0,7 условные вероятности.
Однако, в случае положительного прогноза пакет порождает до 10,6 млн., а в случае отрицательного подешевеет до 3,4 млн. Требуется составить стратегию действий: покупать ли долю, или ждать прогноза, и совершать ли покупку при том или ином результате прогноза.

Задача 5. Компания «Большая нефть» хочет знать, стоит ли бурить нефтяную скважину на одном из участков, купленных ранее в перспективном месте. Бурение, проведенное на множестве соседних участков, показало, что перспективы не так уж хороши. Вероятность найти нефть на глубине не больше 400 м составляет около 50%. При этом стоимость бурения составит 1.5 млн., а стоимость нефти, за вычетом всех расходов, кроме расходов на бурение, составит 6 млн. Если нефть не найдена на малой глубине, не исключена возможность найти ее при более глубоком бурении. Расходы на бурение, вероятность найти нефть и приведенная стоимость нефти для этих случаев даны в таблице.
a. Постройте дерево решений, показывающее последовательные решения о разработке скважины, которые должна принять компания «Большая нефть». На какую среднюю прибыль компания может рассчитывать?
b. Скважину какой глубины нужно быть готовыми пробурить? (Стоит ли остановиться при достижении определенной глубины, или бурить до предельной глубины?)
c. Какова вероятность найти нефть при бурении (при необходимости) до выбранной вами предельной глубины? Какова полная вероятность найти нефть при готовности бурить до 1500 м?

Источник

Мастер-класс «Решение задач с помощью дерева вероятностей»

Задача №4 профильного уровня и задача №10 базового уровня – это задания по теории вероятности. Сегодня мы с вами рассмотрим задачи, для решения которых удобно использовать дерево вероятностей – это простой способ решения некоторых задач.

Рассмотрим две задачи на извлечение шаров из урны.

Задачу №1, мы с вами решали, когда рассматривала классическое определение вероятности.

А вот для того, чтобы решить задачу №2, надо построить дерево вероятностей (граф)

Прежде, чем рассмотреть решение задач, введем ряд определений и понятий.

Дерево вероятностей графически представляет последовательность возможных выводов, решений и результатов, т.е. мы пытаемся представить ход бедующих событий.

Ветвь (направленная линия) – исход, информация вероятности появления

В некоторых задачах дерево построено прямо в условии. В других задачах это дерево надо построить

Рассмотрим задачи, в которых дерево уже построено.

Схема дорожек – это граф, а именно дерево, ребра – дорожки (маршрут).

Напишем около каждого ребра вероятность: (записать с помощью стиуса на интерактивной доске)

— Из точки А ведут две дорожки, поэтому вероятность того, что Павел Иванович выберет дорожку АВ или дорожку АС равна .

— Из точки В – четыре дорожки – вероятность из точки С – три дорожки – вероятность .

-В точку G попадет, если он пройдет дорожку АВ ( И ) дорожку BG . Вероятность находится умножением вероятностей вдоль дорожек.

-Результат

В болото ведут три маршрута.

Напишем на ребрах вдоль маршрутов соответствующие вероятности.

Надо найти вероятность события, которому благоприятствуют несколько исходов. ( ИЛИ – ИЛИ ) — вероятности соответствующих конечных вершин складываются.

Ответ.

Нарисуем маршрут перемещения мышки (маршрут рисуется на интерактивной доске с помощью стиуса).

Расставим на перекрестах стрелки в направлениях, по которым мышка может двигаться.

Подпишем вероятности выбора пути.

Вероятность найдем умножением вероятностей перемещения мышки до Выхода В.

Изобразим ситуацию в виде дерева вероятностей.

— выпускаются первой фабрикой (обозначим I )

-выпускаются второй фабрикой (обозначим II )

-бракованные (обозначим Б )

-пригодные (не бракованные) ( обозначим неБ )

Нас интересуют бракованные стекла, которые выпускает первая ИЛИ вторая фабрика

Предложить решить ученику с объяснениями у доски.

Слайд 10-16. Решение задачи на извлечение шаров из урны.

Решение задач. Тренажер. (приложение распечатать и выполнять на этих же листочках).

Данный материал предназначен для отработки умений и навыков по теме «Решение задач с помощью дерева вероятностей». Тренажер можно использовать и на уроке, и на дополнительных заданиях по подготовке к ЕГЭ.

Задачи №1- №5 решаются совместно с учителем, №6 — №10 – самостоятельно с последующей проверкой.

Контроль усвоения материала. Самостоятельная работа.

Источник

Дерево вероятностей

В этой статье я покажу вам очень простой способ решения некоторых задач по теории вероятностей.
Рассмотрим задачу. Трое друзей Вася, Петя и Слава купили торт, и решили его съесть. Они разделили торт на три равных части. Внезапно появился четвертый друг Коля, и друзья решили отрезать ему по кусочку от своей доли. Вася отрезал 1/3 от своего куска, Петя 1/4, а Слава – половину. Какую часть всего торта получил в итоге Коля?

Изобразим ситуацию, описанную в задаче в виде такой схемы:

Сначала торт разрезали на три равные части, и каждому из трех друзей досталось по 1/3 торта.

Затем пришел Коля и каждый мальчик отрезал ему соответствующую часть своего куска:

Чтобы найти дробь от числа, нужно число умножить на эту дробь. То есть Вася отдает Коле *=1/9 часть торта, Петя — *=1/ часть торта, а Слава *=1/ часть торта.

1/9+1/<12 data-lazy-src=

Источник

Оцените статью