Деревья виды деревьев программирование

Динамические структуры данных: бинарные деревья

Аннотация: В лекции рассматриваются определения, свойства и виды деревьев, элементы, характеристики и способы объявления деревьев в программах, основные операции над элементами деревьев, понятие и виды обходов деревьев, приводятся примеры реализации основных операций над бинарными деревьями в виде рекурсивных функций.

Цель лекции: изучить понятие, формирование, особенности доступа к данным и работы с памятью в бинарных деревьях, научиться решать задачи с использованием рекурсивных функций и алгоритмов обхода бинарных деревьев в языке C++.

Дерево является одним из важнейших и интересных частных случаев графа. Древовидная модель оказывается довольно эффективной для представления динамических данных с целью быстрого поиска информации .

Деревья являются одними из наиболее широко распространенных структур данных в информатике и программировании, которые представляют собой иерархические структуры в виде набора связанных узлов.

Дерево – это структура данных , представляющая собой совокупность элементов и отношений, образующих иерархическую структуру этих элементов ( рис. 31.1). Каждый элемент дерева называется вершиной (узлом) дерева. Вершины дерева соединены направленными дугами, которые называют ветвями дерева. Начальный узел дерева называют корнем дерева, ему соответствует нулевой уровень. Листьями дерева называют вершины, в которые входит одна ветвь и не выходит ни одной ветви.

Каждое дерево обладает следующими свойствами:

  1. существует узел, в который не входит ни одной дуги (корень);
  2. в каждую вершину, кроме корня, входит одна дуга.

Деревья особенно часто используют на практике при изображении различных иерархий. Например, популярны генеалогические деревья.

Дерево

Все вершины, в которые входят ветви, исходящие из одной общей вершины, называются потомками, а сама вершина – предком. Для каждого предка может быть выделено несколько. Уровень потомка на единицу превосходит уровень его предка. Корень дерева не имеет предка, а листья дерева не имеют потомков.

Высота (глубина) дерева определяется количеством уровней, на которых располагаются его вершины. Высота пустого дерева равна нулю, высота дерева из одного корня – единице. На первом уровне дерева может быть только одна вершина – корень дерева , на втором – потомки корня дерева, на третьем – потомки потомков корня дерева и т.д.

Читайте также:  Мое дерево любви стихи

Поддерево – часть древообразной структуры данных, которая может быть представлена в виде отдельного дерева.

Степенью вершины в дереве называется количество дуг, которое из нее выходит. Степень дерева равна максимальной степени вершины, входящей в дерево . При этом листьями в дереве являются вершины, имеющие степень нуль. По величине степени дерева различают два типа деревьев:

Упорядоченное дерево – это дерево , у которого ветви, исходящие из каждой вершины, упорядочены по определенному критерию.

Деревья являются рекурсивными структурами, так как каждое поддерево также является деревом. Таким образом, дерево можно определить как рекурсивную структуру, в которой каждый элемент является:

Действия с рекурсивными структурами удобнее всего описываются с помощью рекурсивных алгоритмов.

Списочное представление деревьев основано на элементах, соответствующих вершинам дерева. Каждый элемент имеет поле данных и два поля указателей: указатель на начало списка потомков вершины и указатель на следующий элемент в списке потомков текущего уровня. При таком способе представления дерева обязательно следует сохранять указатель на вершину, являющуюся корнем дерева .

Для того, чтобы выполнить определенную операцию над всеми вершинами дерева необходимо все его вершины просмотреть. Такая задача называется обходом дерева.

Обход дерева – это упорядоченная последовательность вершин дерева, в которой каждая вершина встречается только один раз.

При обходе все вершины дерева должны посещаться в определенном порядке. Существует несколько способов обхода всех вершин дерева. Выделим три наиболее часто используемых способа обхода дерева ( рис. 31.2):

Обходы деревьев

Существует большое многообразие древовидных структур данных. Выделим самые распространенные из них: бинарные (двоичные) деревья, красно-черные деревья, В-деревья, АВЛ-деревья , матричные деревья, смешанные деревья и т.д.

Бинарные деревья

Бинарные деревья являются деревьями со степенью не более двух.

Бинарное (двоичное) дерево – это динамическая структура данных , представляющее собой дерево , в котором каждая вершина имеет не более двух потомков ( рис. 31.3). Таким образом, бинарное дерево состоит из элементов, каждый из которых содержит информационное поле и не более двух ссылок на различные бинарные поддеревья. На каждый элемент дерева имеется ровно одна ссылка .

Читайте также:  Лдсп цвет светлое дерево

Бинарное дерево и его организация

Каждая вершина бинарного дерева является структурой, состоящей из четырех видов полей. Содержимым этих полей будут соответственно:

  • информационное поле (ключ вершины);
  • служебное поле (их может быть несколько или ни одного);
  • указатель на левое поддерево ;
  • указатель на правое поддерево .

По степени вершин бинарные деревья делятся на ( рис. 31.4):

  • строгие – вершины дерева имеют степень ноль (у листьев) или два (у узлов);
  • нестрогие – вершины дерева имеют степень ноль (у листьев), один или два (у узлов).

В общем случае у бинарного дерева на k -м уровне может быть до 2 k-1 вершин. Бинарное дерево называется полным, если оно содержит только полностью заполненные уровни. В противном случае оно является неполным.

Дерево называется сбалансированным, если длины всех путей от корня к внешним вершинам равны между собой. Дерево называется почти сбалансированным, если длины всевозможных путей от корня к внешним вершинам отличаются не более, чем на единицу.

Бинарное дерево может представлять собой пустое множество . Бинарное дерево может выродиться в список ( рис. 31.5).

Список как частный случай бинарного дерева

Структура дерева отражается во входном потоке данных так: каждой вводимой пустой связи соответствует условный символ, например, ‘*’ (звездочка). При этом сначала описываются левые потомки, затем, правые. Для структуры бинарного дерева , представленного на следующем рисунке 6, входной поток имеет вид: ABD*G***CE**FH**J** .

Адресация в бинарном дереве

Бинарные деревья могут применяться для поиска данных в специально построенных деревьях ( базы данных ), сортировки данных, вычислений арифметических выражений , кодирования (метод Хаффмана) и т.д.

Источник

Деревья

Дерево — это нелинейная иерархическая структура данных. Она состоит из узлов и ребер, которые соединяют узлы.

дерево_1.png

Зачем нужны деревья

Другие структуры данных, например, массивы, списки, стеки и очереди, линейные. Это значит, что данные в них хранятся последовательно. Когда мы выполняем любую операцию в линейной структуре данных, временная сложность растет с увеличением размера данных. В современном мире это не очень круто.

Читайте также:  Средство от побегов деревьев

Разные древовидные структуры позволяют быстрее и легче получать доступ к данным, поскольку дерево — структура нелинейная.

Части дерева

  • Узел — это объект, в котором есть ключ или значение и указатели на дочерние узлы.
    Узлы, у которых нет дочерних узлов, называют листами или терминальными узлами.
    Узлы, у которых есть хотя бы один дочерний узел, называются внутренними.
  • Ребро связывает два узла.
  • Корень — это самый верхний узел дерева. Его ещё иногда называют корневым узлом.

дерево_2 (1).png

Другие понятия

  • Высота узла — это максимальная длина пути от этого узла к самому нижнему узлу (листу).
  • Глубина вложенности узла — длина пути от корня до этого узла.
  • Высота дерева — это высота корневого узла или глубина самого глубокого узла.
  • Степень узла — это общее количество ребер, которые соединены с этим узлом.

дерево_3.png

  • Лес — множество непересекающихся деревьев. Например, если «срезать» корень, получится лес.

дерево_4.png

Виды деревьев

Обход дерева

Чтобы выполнить какую-либо операцию с деревом, нужно добраться до определенного узла. Для этого и существуют алгоритмы обхода дерева. Они помогают «дойти» до необходимого узла.

Где используются

  • Деревья двоичного поиска помогают быстро проверить наличие элемента в наборе.
  • Куча — это тоже своеобразное дерево. Кучи используют в алгоритме сортировки кучей.
  • Префиксные деревья используются в маршрутизаторах, они хранят информацию о маршруте.
  • Большинство популярных баз данных основаны на B-деревья и T-деревья.
  • Компиляторы используют абстрактное синтаксическое дерево, чтобы находить синтаксические ошибки в ваших программах.

СodeСhick.io — простой и эффективный способ изучения программирования.

2023 © ООО «Алгоритмы и практика»

Источник

Оцените статью