Доклад об развитии растения

Эволюция растений

Планета Земля образовалась более 4,5 млрд. лет назад. Первые одноклеточные формы жизни появились возможно появились около 3 млрд. лет назад. Сначала это были бактерии. Их относят к прокариотам, так как у них нет клеточного ядра. Эукариотические (имеющие в клетках ядра) организмы появились позже.

Растениями считаются эукариоты, способные к фотосинтезу. В процессе эволюции фотосинтез появился раньше, чем эукариоты. В то время он существовал у некоторых бактерий. Это были сине-зеленые бактерии (цианобактерии). Некоторые из них сохранились до наших дней.

Согласно наиболее распространенной гипотезе эволюции, растительная клетка образовалась путем попадания в гетеротрофную эукариотическую клетку фотосинтезирующей бактерии, которая не была переварена. Далее процесс эволюции привел к появлению одноклеточного эукариотического фотосинтезирующего организма, имеющего хлоропласты (их предшественников). Так появились одноклеточные водоросли.

Следующим этапом в эволюции растений было возникновение многоклеточных водорослей. Они достигли большого разнообразия и обитали исключительно в воде.

Поверхность Земли не оставалась неизменной. Там, где земная кора поднималась, постепенно возникала суша. Живым организмам приходилось адаптироваться к новым условиям. Некоторые древние водоросли постепенно смогли приспособиться к наземному образу жизни. В процессе эволюции их строение усложнялось, появлялись ткани, в первую очередь покровная и проводящая.

Первыми наземными растениями считаются псилофиты, которые появились около 400 миллионов лет назад. До наших дней они не дожили.

Дальнейшая эволюция растений, связанная с усложнением их строения, шла уже на суше.

Во времена псилофитов климат был теплым и влажным. Псилофиты произрастали недалеко от водоемов. У них были ризоиды (подобие корней), которыми они закреплялись в почве и всасывали воду. Однако у них не было настоящих вегетативных органов (корней, стеблей и листьев). Продвижение воды и органических веществ по растению обеспечивала появившаяся проводящая ткань.

Позже от псилофитов произошли папоротникообразные и мхи. Эти растения имеют более сложное строение, у них есть стебли и листья, они лучше приспособлены к обитанию на суше. Однако, также как у псилофитов, у них сохранялась зависимость от воды. При половом размножении, чтобы сперматозоид достиг яйцеклетки, им нужна вода. Поэтому «уйти» далеко от влажных мест обитания они не могли.

В каменно-угольном периоде (примерно 300 млн. лет назад), когда климат был влажным, папоротникообразные достигли своего рассвета, на планете росло множество их древесных форм. Позднее, отмирая, именно они сформировали залежи каменного угля.

Когда климат на Земле начал становиться более холодным и сухим папоротники начали массово вымирать. Но некоторые их виды перед этим дали начало так называемым семенным папоротникам, которые по-сути были уже голосеменными растениями. В последующей эволюции растений семенные папоротники вымерли, дав перед этим начало другим голосеменным растениям. Позже появились более совершенные голосеменные — хвойные.

Читайте также:  Пихта это покрытосеменные растения

Размножение голосеменных уже не зависело от наличия жидкой воды. Опыление происходило с помощью ветра. Вместо сперматозоидов (подвижных форм) у них образовывались спермии (неподвижные формы), которые доставлялись к яйцеклетке специальными образованиями пыльцевого зерна. Кроме того, у голосеменных образовывались не споры, а семена, содержащие запас питательных веществ.

Дальнейшая эволюция растений ознаменовалась появлением покрытосеменных (цветковых). Это произошло около 130 млн. лет назад. А около 60 млн. лет назад они стали господствовать на Земле. По сравнению с голосеменными, цветковые растения лучше приспособлены для жизни на суше. Можно сказать, они стали больше использовать возможности окружающей среды. Так их опыление стало происходить не только с помощью ветра, но и посредством насекомых. Это повысило эффективность опыления. Семена покрытосеменных находятся в плодах, которые обеспечивают более эффективное их распространение. Кроме того, цветковые растения имеют более сложное тканевое строение, например, в проводящей системе.

В настоящее время покрытосеменные являются наиболее многочисленной по количеству видов группой растений.

Источник

Рост и развитие растений

Рост – это необратимое увеличение размеров и массы клетки, органа или всего организма, связанное с новообразованием элементов их структур. Это понятие отражает количественные изменения, происходящие в процессе развития организма или его частей.

А развитие – это качественные изменения в структуре и функциональной активности растений и его частей в процессе онтогенеза.

Онтогенез – это процесс индивидуального развития организма от зиготы (или вегетативного зачатка) до естественной смерти.

Рост и развитие отражают наследственные особенности и всю совокупность процессов взаимодействия растительного организма с факторами внешней среды. Рост и развитие всегда связаны между собой, обусловливают друг друга.

В процессе индивидуального развития, т.е. онтогенеза, реализуется наследственная информация, называемая генотипом. Естественно, что на этот процесс влияют конкретные условия окружающей среды, в результате чего формируется фенотип – результат реализации генотипа в определенных условиях среды.

Особенности онтогенеза клеток

Выделяют 4 фазы: эмбриональную, растяжения, дифференцировки, старение и смерть дифференцированных клеток.

  1. Эмбриональная фаза проходит в меристемах (образовательных тканях). Делится на 2 периода: период между делениями клетки и собственно деление клетки. Структура клетки в период между делениями (другими словами, интерфаза) имеет ряд особенностей: густая цитоплазма с хорошо развитой ЭПС, мелкие вакуоли, много рибосом, митохондрий тоже много, но они еще не совсем развиты (мало крист, матрикс густой). Ядро небольшого размера с крупным ядрышком. В интерфазе очень активно идет процесс синтеза белков, что в свою очередь требует затраты энергии, соответственно, высока интенсивность дыхания. В интерфазе же происходит и редупликация ДНК.
Читайте также:  Однолетние лесные травянистые растения

Перед делением клетки происходят заметные изменения в энергетическом состоянии, наступает как бы энергетическая разрядка. Интенсивность обменных процессов падает, синтез белка практически прекращается.

Деление начинается с деления ядра, проходит все стадии, формируются плазмолемма, срединная пластинка, клеточная стенка. Все обменные процессы активируются. Дочерняя клетка растет до размеров материнской и вновь делится. Так не более 3-5 раз.

Эмбриональная фаза онтогенеза клетки контролируется гормонами. Для пред- и постсинтетических фаз необходим ауксин, активизирующий транскрипцию и трансляцию, а также высокую интенсивность дыхания. Цитокинин требуется для митоза и цитокинеза.

Затем эмбриональные клетки переходят в следующую фазу роста – растяжения.

  1. Фаза растяжения. В этой фазе происходит следующее: цитоплазма становится менее вязкой, более обводненной. Каналы ЭПС расширяются, местами переходят в цистерны. Развиваются кристы у митохондрий. Ядра принимают неправильную форму с тем, чтобы увеличить поверхность соприкосновения с цитоплазмой. Мелкие вакуоли сливаются и образуется центральная вакуоль. Скорость синтеза белка увеличивается. Возрастает, причем очень существенно, объем клетки. Основная причина – усиленное поступление воды.

Переход к фазе роста растяжением вызывается изменением соотношения концентраций ауксина и цитокинина в пользу ауксина.

Ауксин активизирует Н-помпу, направленную из цитоплазмы в клеточную стенку. Происходит закисление клеточных стенок, активизируются кислые гидролазы, разрываются связи между компонентами клеточной стенки, клеточная стенка перестает оказывать прежнее сопротивление и это приводит к увеличению сосущей силы клетки.

T – тургорное давление, создаваемое противодавлением клеточной стенки.

Если Т становится меньше, то S >. В клетки поступает вода. Ауксин активизирует транскрипцию, трансляцию, активизируется деятельность аппарата Гольджи, поступают углеводы, целлюлозо-синтетаза.

Выбор направления роста (изодиаметрический или удлинение) зависит от расположения микрофибрилл целлюлозы, за ориентацию которых ответственны микротрубочки.

  1. Фаза дифференциации.Дифференциация – это возникновение структурных и функциональных различий между клетками, приводящее к многообразию клеток. Природа клетки и соответственно выполняемые ею функции будут зависеть от того, какой комплекс генов в ней будет активен, причем большинство эмбриональных клеток усложняют свою структуру, другие – упрощают. Примером последних является образование члеников ситовидной трубки: исчезают клеточные ядра, тонопласт. В клетках-спутницах флоэмы формируется большое количество митохондрий, а в эпидермальных клетках листа – минимальное.

Приобретение клеткой, тканью, органом, организмом способности реализовать определенные наследственные признаки называется детерминацией (от лат. determinare – определять).

Дифференциация начинается уже во время фазы роста растяжением: слабое растяжение – паренхимная клетка, сильное – вытянутые, палочковидные клетки колленхимы.

Выбор пути развития клетки, т.е. детерминация может быть запрограммирован или может возникнуть под влиянием внешних факторов: соседние клетки, гормоны.

Читайте также:  Дикорастущие растение которые можно есть

Запрограммированным является неэквационное деление зиготы. Она делится на одну меньшую по размерам клетку, которая дольше сохраняет способность к делению и после серии делений превращается в собственно зародыш. Вторая, большая по размерам клетка, делится менее активно, из нее формируется первичный корешок и подвесок.

Влияние соседних клеток проявляется двояким образом: или навязывается собственный путь развития, или же, наоборот, соседние клетки оказывают блокирующий эффект, не допуская в ближайшем окружении образования аналогичных клеток. Так, например, инициальная клетка устьица делится на 2 замыкающие клетки, которые не допускают в ближайшем окружении образования подобных, формируя поле торможения благодаря, видимо, передаче каких-то неидентифицированных сигнальных веществ по плазмодесмам. Поэтому устьица (как вы видели) располагаются на определенном расстоянии друг от друга.

Дифференцированные клетки, могут снова вернуться к эмбриональной активности в результате дедифференцировки – переход специализированных неделящихся клеток снова к делению. В основе дедифференцировки лежит изменение активности генов, индуцированное каким-либо воздействием, например, при механических повреждениях ближайшие к поверхности разреза паренхимные клетки сначала увеличиваются в размерах, а затем у них начинаются митозы. Образуется масса недифференцированных клеток (раневой каллус), которые закрывают рану, а затем в них происходит новая дифференциация, называемая редифференциацией. Срастание прививок с подвоем происходит также. Во время редифференциации раневого каллуса соседние клетки навязывают собственный путь развития, поэтому происходит объединение проводящих пучков привоя и подвоя.

При вегетативном размножении стеблевыми черенками клетки нижней части стебля дедифференцируются, делятся, затем редифференцируются, образуя клетки придаточного корня.

Этот этап связан с ослаблением биосинтетических процессов и активацией гидролитических процессов.

Причины: 1) накопление повреждений в генетическом аппарате или 2) включение генетической программы старения как последнего этапа онтогенеза. Как результат этих изменений – соотношение фитогормонов, возрастание гормонов ингибиторов.

Видимые признаки старения клеток:

  1. закисление цитоплазмы, происходящее в результате ингибирования Н-помпы абсцизовой кислотой (изменения конформации белков);
  2. снижение полупроницаемости мембран из-за окисления липидов мембран активно образующимися пероксидами (из-за сдвига рН в кислую сторону).

Программированная смерть клетки называется апоптоз. Апоптоз индуцируется рядом неблагоприятных факторов внешней среды – стрессоров, например, инфекции. Зараженные клетки быстро накапливают фенольные соединения, при окислении которых образуются значительные количества перекиси водорода с которой не справляются каталазы. Клетки отмирают, это проявляется в образовании на тканях растений пятен мертвых клеток, которые называются некрозами. Роль некротических пятен – препятствие для распространения инфекции. Возникновение некрозов является формой запрограммированной смерти клеток.

Наряду с апоптозом существует генетически запрограммированная смерть органов (органоптоз) и организма в целом (феноптоз). Так, листья генетически запрограммированы для старения и смерти. Многолетние монокарпические растения после единственного акта цветения отмирают.

Источник

Оцените статью