- Билет № 8. 1. Энергетический обмен в клетках растений и животных, его значение
- 2. Энергетический обмен (катаболизм, диссимиляция)
- 8. Энергетический обмен в клетках растений и животных, его значение. Роль митохондрий в нем.
- 9. Пластический обмен. Биосинтез белка. Роль ядра, рибосом и эндоплазматической сети в этом процессе. Матричный характер реакций биосинтеза.
Билет № 8. 1. Энергетический обмен в клетках растений и животных, его значение
1. Энергетический обмен в клетках растений и животных, его значение. Роль митохондрий в нем.
2. Движущие силы эволюции, их роль в образовании новых видов.
3. Рассмотреть обитателей аквариума и составить пищевую цепь. Объяснить, почему в аквариуме пищевые цепи короткие.
1. 1. Энергетический обмен — совокупность реакций окисления органических веществ в клетке, синтеза молекул АТФ за счет освобождаемой энергии. Значение энергетического обмена — снабжение клетки энергией, которая необходима для жизнедеятельности.
2. Этапы энергетического обмена: подготовительный, бескислородный, кислородный.
1) Подготовительный — расщепление в лизосомах полисахаридов до моносахаридов, жиров до глицерина и жирных кислот, белков до аминокислот, нуклеиновых кислот до нуклеотидов. Рассеивание в виде тепла небольшого количества освобождаемой при этом энергии;
2) бескислородный — окисление веществ без участия кислорода до более простых, синтез за счет освобождаемой энергии двух молекул АТФ. Осуществление процесса на внешних мембранах митохондрий при участии ферментов;
3) кислородный — окисление кислородом воздуха простых органических веществ до углекислого газа и воды, образование при этом 36 молекул АТФ. Окисление веществ при участии ферментов, расположенных на кристах митохондрий. Сходство энергетического обмена в клетках растений, животных, человека и грибов — доказательство их родства. 3. Митохондрии — «силовые станции» клетки, их отграничение от цитоплазмы двумя мембранами — внешней и внутренней. Увеличение поверхности внутренней мембраны за счет образования складок — крист, на которых расположены ферменты. Они ускоряют реакции окисления и синтеза молекул АТФ. Огромное значение митохондрий — причина большого количества их в клетках организмов почти всех царств.
2. 1. Учение Ч. Дарвина о движущих силах эволюции (середина XIX в.). Современные данные цитологии, генетики, экологии, обогатившие учение Дарвина об эволюции.
2. Движущие силы эволюции: наследственная изменчивость организмов, борьба за существование и естественный отбор. Эволюция органического мира — результат совместного действия всего комплекса движущих сил.
3. Изменчивость особей в популяции — причина ее неоднородности, эффективности действия естественного отбора. Наследственная изменчивость — способность организмов изменять свои признаки и передавать изменения потомству. Роль мутационной и комбинативной изменчивости особей в эволюции. Изменение генов, хромосом, генотипа — материальные основы мутационной изменчивости. Перекрест гомологичных хромосом, их случайное расхождение в мейозе и случайное сочетание гамет при оплодотворении — основа комбинативной изменчивости.
4. Популяция — элементарная единица эволюции, накопление в ней рецессивных мутаций в результате размножения особей. Генотипическое и фенотипическое разнообразие особей в популяции — исходный материал для эволюции. Относительная изоляция популяций — фактор ограничения свободного скрещивания, а значит, и усиления генотипического различия между популяциями
5. Борьба за существование — взаимоотношения особей в популяциях, между популяциями, с факторами неживой природы. Способность особей к безграничному размножению, увеличению численности популяций и ограниченность ресурсов (пищи, территории и др.) — причина борьбы за существование. Виды борьбы за существование: внутривидовая, межвидовая, с неблагоприятными условиями.
6. Естественный отбор — процесс выживания особей с полезными в данных условиях среды наследственными изменениями и оставления ими потомства. Отбор — следствие борьбы за существование, главный, направляющий фактор эволюции (из разнообразных изменений отбор сохраняет особей преимущественно с полезными мутациями для определенных условий среды).
7. Возникновение наследственных изменений, их распространение и накопление в рецессивном состоянии в популяции благодаря размножению особей. Сохранение полезных для определенных условий изменений естественным отбором, оставление этими особями потомства — основа изменения генного состава популяций, появления новых видов.
8. Взаимосвязь наследственной изменчивости, борьбы за существование, естественного отбора — причина эволюции органического мира, образования новых видов.
3. Можно составить следующие пищевые цепи в аквариуме: водные растения —» рыбы; органические остатки —» моллюски. Небольшое число звеньев в цепи питания объясняется тем, что в ней обитает мало видов, численность каждого вида небольшая, мало пищи, кислорода, в соответствии с правилом экологической пирамиды потеря энергии от звена к звену составляет около 90%.
Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:
Источник
2. Энергетический обмен (катаболизм, диссимиляция)
В любой клетке главным источником энергии для всех протекающих в ней процессов служит универсальное энергетическое соединение — АТФ.
АТФ образуется в результате присоединения к АДФ (аденозиндифосфату) одного остатка фосфорной кислоты. Этот процесс называется фосфорилированием :
В молекуле АТФ есть две богатые энергией химические связи. Это связи между остатками фосфорной кислоты. Такие высокоэнергетические связи называют макроэргическими . При разрыве одной макроэргической связи АТФ превращается в АДФ и выделяется около \(40\) кДж/моль энергии.
Энергетический обмен (диссимиляция, катаболизм) — это реакции расщепления и окисления органических веществ, протекающие с выделением энергии, частично расходующейся на образование АТФ.
В кислородсодержащей среде (у аэробных организмов) диссимиляция протекает в три этапа: подготовительный, бескислородный и кислородный. В результате образуются простые неорганические вещества.
В бескислородной среде (у анаэробных организмов), а также при недостатке кислорода у аэробных организмов, энергетический обмен протекает в два этапа: подготовительный и бескислородный. В этом случае количество запасённой энергии намного меньше, чем в присутствии кислорода.
На подготовительном этапе большие молекулы органических веществ распадаются до более простых: из полисахаридов образуются моносахариды, из жиров — смесь глицерина и жирных кислот, а из белков — смесь аминокислот.
Этот процесс происходит в лизосомах и в органах пищеварения под действием пищеварительных ферментов.
На подготовительном этапе АТФ не образуется, а небольшое количество выделяющейся энергии рассеивается.
На втором этапе происходит расщепление продуктов подготовительного этапа под действием ферментов. Кислород при этом не используется.
Бескислородный этап расщепления глюкозы имеет название гликолиз. Этот процесс протекает в цитоплазме клеток.
При гликолизе происходит несколько реакций, в результате которых из молекулы глюкозы C 6 H 12 O 6 образуется \(2\) молекулы пировиноградной кислоты (ПВК) C 3 H 4 O 3 , а также \(2\) молекулы АТФ. В них запасается около \(40\) % выделившейся энергии, остальные \(60\) % рассеиваются.
Образовавшаяся пировиноградная кислота в анаэробных условиях превращается в молочную кислоту C 3 H 6 O 3 :
Такой процесс происходит в клетках животных, некоторых грибов и бактерий. Молочная кислота может образоваться и в мышцах человека при длительных нагрузках и недостатке кислорода. Тогда мышцы начинают болеть.
В растительных клетках и клетках дрожжей из пировиноградной кислоты образуется этиловый спирт C 2 H 5 OH и углекислый газ CO 2 , т. к. происходит спиртовое брожение :
C 6 H 12 O 6 + 2 H 3 PO 4 + 2 АДФ = 2 C 2 H 5 OH + 2 CO 2 + 2 АТФ + 2 H 2 O .
В кислородной среде после гликолиза протекает третий этап энергетического обмена — кислородный, или клеточное дыхание. Полное кислородное расщепление осуществляется на мембранах митохондрий.
Этот этап тоже является многостадийным. В нём выделяют два процесса — цикл Кребса и окислительное фосфорилирование .
Сущность третьего (кислородного) этап заключается в окислении ПВК до углекислого газа и воды При этом выделившаяся энергия запасается в \(36\) молекулах АТФ (\(2\) — в цикле Кребса и \(34\) — при окислительном фосфорилировании).
Так как \(2\) молекулы АТФ образуются при гликолизе, то в сумме при полном окислении одной молекулы глюкозы образуется \(38\) молекул АТФ.
C 6 H 12 O 6 + 6 O 2 = 6 CO 2 + 6 H 2 O + 38 АТФ .
В реакциях энергетического обмена используется не только глюкоза, но и липиды, белки. Но главным источником энергии в большинстве клеток являются углеводы.
Источник
8. Энергетический обмен в клетках растений и животных, его значение. Роль митохондрий в нем.
1. Энергетический обмен — совокупность реакций окисления органических веществ в клетке, синтеза молекул АТФ за счет освобождаемой энергии. Значение энергетического обмена — снабжение клетки энергией, которая необходима для жизнедеятельности .
2. Этапы энергетического обмена: подготовительный, бескислородный, кислородный.
1) Подготовительный — расщепление в лизосо-мах полисахаридов до моносахаридов, жиров до глицерина и жирных кислот, белков до аминокислот, нуклеиновых кислот до нуклеотидов. Рассеивание в виде тепла небольшого количества освобождаемой при этом энергии;
2) бескислородный — окисление веществ без участия кислорода до более простых, синтез за счет освобождаемой энергии двух молекул АТФ. Осуществление процесса на внешних мембранах митохондрий при участии ферментов;
3) кислородный — окисление кислородом воздуха простых органических веществ до углекислого газа и воды, образование при этом 36 молекул АТФ. Окисление веществ при участии ферментов, расположенных на кристах митохондрий. Сходство энергетического обмена в клетках растений, животных, человека и грибов — доказательство их родства.
3. Митохондрии — «силовые станции» клетки, их отграничение от цитоплазмы двумя мембранами — внешней и внутренней. Увеличение поверхности внутренней мембраны за счет образования складок — крист, на которых расположены ферменты. Они ускоряют реакции окисления и синтеза молекул АТФ. Огромное значение митохондрий — причина большого количества их в клетках организмов почти всех царств.
9. Пластический обмен. Биосинтез белка. Роль ядра, рибосом и эндоплазматической сети в этом процессе. Матричный характер реакций биосинтеза.
1. Пластический обмен — совокупность реакций синтеза органических веществ в клетке с использованием энергии. Синтез белков из аминокислот, жиров из глицерина и жирных кислот — примеры биосинтеза в клетке.
2. Значение пластического обмена: обеспечение клетки строительным материалом для создания клеточных структур; органическими веществами, которые используются в энергетическом обмене.
3. Фотосинтез и биосинтез белков — примеры пластического обмена. Роль ядра, рибосом, эндоплазматической сети в биосинтезе белка. Ферментативный характер реакций биосинтеза, участие в нем разнообразных ферментов. Молекулы АТФ — источник энергии для биосинтеза.
4. Матричный характер реакций синтеза белков и нуклеиновых кислот в клетке. Последовательность нуклеотидов в молекуле ДНК — матричная основа для расположения нуклеотидов в молекуле иРНК, а последовательность нуклеотидов в молекуле иРНК — матричная основа для расположения аминокислот в молекуле белка в определенном порядке.
1) транскрипция — переписывание в ядре информации о структуре белка с ДНК на иРНК. Значение дополнительности азотистых оснований в этом процессе. Молекула иРНК — копия одного гена, содержащего информацию о структуре одного белка. Генетический код — последовательность нуклеотидов в молекуле ДНК, которая определяет последовательность аминокислот в молекуле белка. Кодирование аминокислот триплетами — тремя рядом расположенными нуклеотидами;
2) перемещение иРНК из ядра к рибосоме, нанизывание рибосом на иРНК. Расположение в месте контакта иРНК и рибосомы двух триплетов, к одному из которых подходит тРНК с аминокислотой. Дополнительность нуклеотидов иРНК и тРНК — основа взаимодействия аминокислот. Передвижение рибосомы на новый участок иРНК, содержащий два триплета, и повторение всех процессов: доставка новых аминокислот, их соединение с фрагментом молекулы белка. Движение рибосомы до конца иРНК и завершение синтеза всей молекулы белка.
6. Высокая скорость реакций биосинтеза белка в клетке. Согласованность процессов в ядре, цитоплазме, рибосомах — доказательство целостности клетки. Сходство процесса биосинтеза белка в клетках растений, животных и др. — доказательство их родства, единства органического мира.
Источник