Фотосинтез хвойных растений зимой

Есть ли Фотосинтез зимой у Хвойных?

Зимний фотосинтез вечнозеленых растений.
В районах с мягкими зимами у вечнозеленых растений фотосинтез осуществляется в течение всего года. В местах с суровыми зимами фотосинтез может быть незначительным несколько недель или месяцев.

Наблюдаемое поглощение СО2 или прирост сухой массы в течение зимы были установлены для сосны ежовой и сосны ладанной на юге Соединенных Штатов, для сосны замечательной и сосны обыкновенной в Аберистуите (Уэльс) и для широколистных вечнозеленых растений в Северной Италии. Деревья дугласии накапливали значительные количества продуктов фотосинтеза зимой в мягких климатических условиях прибрежного района северо-запада Соединенных Штатов. В засушливый год чистый прирост продуктов фотосинтеза в течение зимы приближался к 1/4 общего прироста за весь год. Вдоль всей прибрежной зоны Норвегии у сосен и елей уменьшалась сухая масса в течение коротких периодов зимой, но за всю зиму у них обнаружился чистый прирост, доказавший превышение фотосинтеза над дыханием. Сухая масса сеянцев ели ситхинской в Южной Шотландии удваивалась за период с конца сентября и до середины апреля. Большая часть прироста приходилась на конец марта — начало апреля, но некоторое количество сухой массы накапливалось в середине зимы.

В районах с холодными зимами интенсивность фотосинтеза у вечнозеленых растений наблюдалась вплоть до точки замерзания или даже немного ниже. Например, около Мюнхена поглощение СО2 елью европейской происходило в дни, когда температура воздуха была немного ниже нуля. В долине около Инсбрука (Австрия) фотосинтез ели европейской продолжался и зимой до наступления сильных морозов. Однако на границе древесной растительности около горы Патчеркофель морозная погода в ноябре (от -10° до -15°) вызвала прекращение фотосинтеза. Пизек и Випклер (1958) показали, что интенсивность нетто-фотосинтеза ели европейской и сосны кедровой европейской была заметной до поздней осени. Последующие изменения температуры на несколько градусов ниже и выше нуля вызывали колебания поглощения СО2. Как только температура падала ниже -4° или -5°С, фотосинтез прекращался. Если же после этого морозы повторялись в течение нескольких ночей, то днем фотосинтез был ингибирован, даже если температура поднималась выше нуля. После мороза от -6° до -8°С нетто-фотосинтез прекращался, и требовалось несколько дней с мягкой погодой для восстановления фотосинтетической способности. Полностью фотосинтез возобновлялся с повышением температуры весной. Особенно это касалось частей кроны, в которых происходил распад хлорофилла в течение зимы. Весной вместе с колебаниями температуры колебалась и интенсивность фотосинтеза. Следовательно, фотосинтетический аппарат оставался функционально активным только до тех пор, пока зимой не наступали морозы, У верхней границы распространения леса температуры были в течение 4-5 месяцев такими низкими, что фотосинтез по существу был невозможен.

Читайте также:  Какие растения можно полить водкой

Пользуйтесь, пожалуйста, поисковиками.

Зимний фотосинтез вечнозеленых растений.
В районах с мягкими зимами у вечнозеленых растений фотосинтез осуществляется в течение всего года. В местах с суровыми зимами фотосинтез может быть незначительным несколько недель или месяцев.

Наблюдаемое поглощение СО2 или прирост сухой массы в течение зимы были установлены для сосны ежовой и сосны ладанной на юге Соединенных Штатов, для сосны замечательной и сосны обыкновенной в Аберистуите (Уэльс) и для широколистных вечнозеленых растений в Северной Италии. Деревья дугласии накапливали значительные количества продуктов фотосинтеза зимой в мягких климатических условиях прибрежного района северо-запада Соединенных Штатов. В засушливый год чистый прирост продуктов фотосинтеза в течение зимы приближался к 1/4 общего прироста за весь год. Вдоль всей прибрежной зоны Норвегии у сосен и елей уменьшалась сухая масса в течение коротких периодов зимой, но за всю зиму у них обнаружился чистый прирост, доказавший превышение фотосинтеза над дыханием. Сухая масса сеянцев ели ситхинской в Южной Шотландии удваивалась за период с конца сентября и до середины апреля. Большая часть прироста приходилась на конец марта — начало апреля, но некоторое количество сухой массы накапливалось в середине зимы.

В районах с холодными зимами интенсивность фотосинтеза у вечнозеленых растений наблюдалась вплоть до точки замерзания или даже немного ниже. Например, около Мюнхена поглощение СО2 елью европейской происходило в дни, когда температура воздуха была немного ниже нуля. В долине около Инсбрука (Австрия) фотосинтез ели европейской продолжался и зимой до наступления сильных морозов. Однако на границе древесной растительности около горы Патчеркофель морозная погода в ноябре (от -10° до -15°) вызвала прекращение фотосинтеза. Пизек и Випклер (1958) показали, что интенсивность нетто-фотосинтеза ели европейской и сосны кедровой европейской была заметной до поздней осени. Последующие изменения температуры на несколько градусов ниже и выше нуля вызывали колебания поглощения СО2. Как только температура падала ниже -4° или -5°С, фотосинтез прекращался. Если же после этого морозы повторялись в течение нескольких ночей, то днем фотосинтез был ингибирован, даже если температура поднималась выше нуля. После мороза от -6° до -8°С нетто-фотосинтез прекращался, и требовалось несколько дней с мягкой погодой для восстановления фотосинтетической способности. Полностью фотосинтез возобновлялся с повышением температуры весной. Особенно это касалось частей кроны, в которых происходил распад хлорофилла в течение зимы. Весной вместе с колебаниями температуры колебалась и интенсивность фотосинтеза. Следовательно, фотосинтетический аппарат оставался функционально активным только до тех пор, пока зимой не наступали морозы, У верхней границы распространения леса температуры были в течение 4-5 месяцев такими низкими, что фотосинтез по существу был невозможен.

Читайте также:  Растения похоже на тюльпаны

Источник

Идет ли зимой фотосинтез у хвойных?

Научно-популярный журнал: «Как и Почему»

Идет ли зимой фотосинтез у хвойных?

Растения

Хвойные деревья осуществляют процесс фотосинтеза и питаются полезными веществами. Однако в отличие от большинства растений, они остаются зелеными даже зимой, во время суровых морозов. И пока остальные деревья ждут наступления теплоты, чтобы снова расцвести, хвойные гордо носят иголки. Но идет ли у них фотосинтез в это время года?

Интересные факты о хвойных

Хвойные деревья обладают рядом уникальных особенностей, которые не свойственны остальным растениям. Благодаря этому, с ними связано несколько интересных фактов:

  1. В хвое большинства деревьев присутствует много витамина С.
  2. У елей и некоторых других хвойных ветки, расположенные в верхней части ствола, гораздо пышнее, чем внизу. Это связано с тем, что на них попадает больше света.
  3. Большинство хвойных являются долгожителями. Например, мамонтовое дерево может расти на протяжении 3 тысяч лет.
  4. Многие грибы растут исключительно вблизи хвойных деревьев, например, маслята и т.д.
  5. Зимой внутри хвойных лесов теплее, чем за их пределами, поскольку кроны деревьев задерживают тепло.

Также в хвойных лесах встречается разная живность. Животные обитают в этой среде из-за благоприятных условий, а некоторые, например, белки, любят кормиться кедровыми орехами и другими плодами.

Идет ли зимой фотосинтез у хвойных?

Фото ветки хвойного дерева крупным планом

Фотосинтез – это процесс, в ходе которого, под воздействием света, хлорофилл внутри растения из воды и углекислот образует органические вещества, выделяет кислород. Выполняется он и внутри хвойных деревьев. Однако по своим свойствам он схож с тем, что происходит в клетках других растений. Поэтому фотосинтез у хвойных в полной мере осуществляется в основном в плюсовую погоду.

Интересный факт: у хвойных деревьев фотосинтез происходит быстрее, чем у обычных деревьев, поскольку так они получают все необходимые вещества без использования корневой системы.

Если же температура опускается ниже -5 градусов Цельсия, деревья прекращают образование органики и выделение кислорода. Хлорофилл также продолжает поглощать солнечные лучи, но внутри иголок содержится недостаточно жидкости для фотосинтеза.

Однако стоит температуре снова стать плюсовой, у дерева появится возможность накопить влагу и возобновить производство органических веществ.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Почему ёлки зелёные? Учёные раскрыли секрет хвойных деревьев

Оказывается, у них есть особый — зимний — режим фотосинтеза. Правда, кислород во время этого процесса не вырабатывается, зато иголки в целости и сохранности.

Фото © Shutterstock</p data-lazy-src=

Не в последнюю очередь из-за него биологи из того же университета задались вопросом о секретах живучести хвойных. Больше всего их интересовало, что именно происходит внутри иголок зимой. И дело не только в промёрзшей земле и, как следствие, полном отсутствии воды. Как с этим справляются вечнозелёные, вполне понятно — для того природа и наградила их тонкими иголками вместо плоских листьев. Меньше площадь поверхности — меньше испарения. Плюс слой воска на каждой иголочке. Но есть ещё одна проблема. На самом деле тяжелее всего хвойным деревьям приходится даже не зимой, а ранней весной. Ещё очень холодно, а солнца уже довольно много. И это весьма неудачное сочетание: интенсивный свет в морозные дни может навсегда разрушить белки, необходимые для фотосинтеза. Спрашивается, как же хвойным удаётся этого избежать?

Учёные три зимы подряд рассматривали сосны в микроскоп. Как они подчеркнули, работать приходилось не где-нибудь в тёплой лаборатории, а прямо на морозе. Чтобы увидеть, что творится в хвоинках в условиях суровой зимы.

Фото © Shutterstock

Как выяснилось, хвойные деревья зимой переходят на особую — «сокращённую» — схему фотосинтеза. Надо сказать, это вообще невероятно сложный процесс. В растениях работают два совершенно разных светособирающих комплекса: фотосистема I и фотосистема II. Правда, в порядке очерёдности получается, что сначала запускается вторая, а потом первая. Фотосистема II вырабатывает кислород из воды. Фотосистема I участвует в преобразовании углекислого газа. Летом действуют оба аппарата, но зимой они полноценно работать не могут — как минимум потому, что нет доступа к воде в жидком виде. Возникает вопрос: что делать с весенними лучами? Как установили учёные, хлорофиллы в фотосистеме II поглощают свет, но для собственных процессов его не используют, а передают энергию фотосистеме I. Измерения показали, что как раз ранней весной в фотосистему I поступает максимум «донорского» света. А там вся эта энергия рассеивается специальным пигментом. Таким образом удаётся благополучно пережить мороз и солнце и дождаться потепления, чтобы снова начать выработку кислорода.

Биологи уверены, что без этой способности хвойные деревья не могли бы оставаться вечнозелёными и выживать там, где другие растения жить не могут. А без них на Севере не могли бы выжить и люди — это был и материал для строительства домов, и дрова. И, наконец, ещё один занятный вывод учёных: трудно представить, что бы мы наряжали под Новый год, не будь на свете хитрого зимнего фотосинтеза.

Источник

Оцените статью