14.Суточные и сезонные изменения фотосинтеза. Фотосинтез, рост и продуктивность растений
Ранним утром фотосинтез идет слабо вследствие небольшой интенсивности света и низкой температуры. При повышении интенсивности света, нагревании воздуха устьица открываются, фотосинтез начинает быстро увеличиваться и может достичь максимума до полудня. Часто вслед за максимумом наступает полуденное понижение. Полуденная депрессия нередко сменяется новым повышением фотосинтеза в более поздние послеполуденные часы, а затем окончательно снижается.. Вследствие изменений условий внешней среды в разные дни и в пределах одного дня дневной ход фотосинтеза часто значительно отклоняется от описанного выше. Причины дневных изменений фотосинтеза. Регуляция дневного хода фотосинтеза под влиянием разнообразных внешних и внутренних факторов очень сложна. Главными из внешних факторов являются, по-видимому, свет, температура, наличие воды, содержание СО2 в воздухе и различные взаимодействия между ними. Внутреннюю регуляцию поглощения СО2 относили за счет разных причин: водного стресса, закрывания устьиц, чрезмерного дыхания, накопления конечных продуктов фотосинтеза и фотоокисления ферментов. Сезонные изменения Сезонные изменения фотосинтетической способности у голосеменных происходят более постепенно, чем у листопадных покрытосеменных. Когда температура весной повышается и ночные заморозки становятся менее частыми, фотосинтетическая способность голосеменных постепенно увеличивается. Осенью интенсивность фотосинтеза также постепенно понижается. У листопадных покрытосеменных фотосинтез быстро ускоряется весной, когда деревья вновь покрываются листвой, остается высоким в течение лета, быстро уменьшается в конце лета, когда листья стареют, и окончательно падает до нуля, когда они опадают. Сезонные изменения фотосинтетической способности различаются у видов с разным характером развития листьев. Следовательно, сезонные изменения фотосинтетической способности происходят при изменении площади листьев. Фотосинтез, рост и продуктивность растений Взаимоотношения роста растений и интенсивности фотосинтеза отражают непрерывную перестройку фотосинтетического аппарата в ходе онтогенеза и динамику формирования и активности растущих (аттрагирующих) органов, потребляющих ассимиляты. Начальный этап развития листа осуществляется за счет деления и роста клеток, а затем — лишь путем растяжения. За это время делятся и развиваются хлоропласты, число которых увеличивается, пока растет объем клетки. Новообразование хлоропластов завершается довольно рано, но рост клеток опережает увеличение числа хлоропластов. Однако содержание хлорофилла в хлоропласте продолжает увеличиваться и после достижения хлоропластом наибольшей величины. Максимальная интенсивность фотосинтеза наблюдается во время роста клеток листа растяжением и начинает несколько снижаться. Затем процесс фотосинтеза может уменьшаться с возрастом листа. На ранних этапах роста лист сам потребляет ассимиляты из более зрелых листьев или из запасающих тканей. По мере роста листа усиливается транспорт ассимилятов из него в другие листья и органы и постепенно лист становится донором ассимилятов. Взрослые листья отдают свои ассимиляты в аттрагирующие зоны растения, оставляя на собственные нужды 10—40% ассимйлятов и почти не обмениваясь между собой продуктами фотосинтеза. Последнее явление, названное «суровым законом», способствует лучшему распределению ассимилятов в целом растении. Стареющие листья со слабой фотосинтетической активностью отдают другим органам не только ассимиляты, но и продукты распада структур цитоплазмы.
Для продолжения скачивания необходимо пройти капчу:
Источник
Суточные и сезонные изменения фотосинтеза. Фотосинтез, рост и продуктивность растений
Ранним утром фотосинтез идет слабо вследствие небольшой интенсивности света и низкой температуры. При повышении интенсивности света, нагревании воздуха устьица открываются, фотосинтез начинает быстро увеличиваться и может достичь максимума до полудня. Часто вслед за максимумом наступает полуденное понижение. Полуденная депрессия нередко сменяется новым повышением фотосинтеза в более поздние послеполуденные часы, а затем окончательно снижается.. Вследствие изменений условий внешней среды в разные дни и в пределах одного дня дневной ход фотосинтеза часто значительно отклоняется от описанного выше.
Причины дневных изменений фотосинтеза. Регуляция дневного хода фотосинтеза под влиянием разнообразных внешних и внутренних факторов очень сложна. Главными из внешних факторов являются, по-видимому, свет, температура, наличие воды, содержание СО2 в воздухе и различные взаимодействия между ними. Внутреннюю регуляцию поглощения СО2 относили за счет разных причин: водного стресса, закрывания устьиц, чрезмерного дыхания, накопления конечных продуктов фотосинтеза и фотоокисления ферментов.
Сезонные изменения фотосинтетической способности у голосеменных происходят более постепенно, чем у листопадных покрытосеменных. Когда температура весной повышается и ночные заморозки становятся менее частыми, фотосинтетическая способность голосеменных постепенно увеличивается. Осенью интенсивность фотосинтеза также постепенно понижается. У листопадных покрытосеменных фотосинтез быстро ускоряется весной, когда деревья вновь покрываются листвой, остается высоким в течение лета, быстро уменьшается в конце лета, когда листья стареют, и окончательно падает до нуля, когда они опадают. Сезонные изменения фотосинтетической способности различаются у видов с разным характером развития листьев. Следовательно, сезонные изменения фотосинтетической способности происходят при изменении площади листьев.
Фотосинтез, рост и продуктивность растений
Взаимоотношения роста растений и интенсивности фотосинтеза отражают непрерывную перестройку фотосинтетического аппарата в ходе онтогенеза и динамику формирования и активности растущих (аттрагирующих) органов, потребляющих ассимиляты. Начальный этап развития листа осуществляется за счет деления и роста клеток, а затем — лишь путем растяжения. За это время делятся и развиваются хлоропласты, число которых увеличивается, пока растет объем клетки. Новообразование хлоропластов завершается довольно рано, но рост клеток опережает увеличение числа хлоропластов. Однако содержание хлорофилла в хлоропласте продолжает увеличиваться и после достижения хлоропластом наибольшей величины. Максимальная интенсивность фотосинтеза наблюдается во время роста клеток листа растяжением и начинает несколько снижаться. Затем процесс фотосинтеза может уменьшаться с возрастом листа.
На ранних этапах роста лист сам потребляет ассимиляты из более зрелых листьев или из запасающих тканей. По мере роста листа усиливается транспорт ассимилятов из него в другие листья и органы и постепенно лист становится донором ассимилятов. Взрослые листья отдают свои ассимиляты в аттрагирующие зоны растения, оставляя на собственные нужды 10—40% ассимйлятов и почти не обмениваясь между собой продуктами фотосинтеза. Последнее явление, названное «суровым законом», способствует лучшему распределению ассимилятов в целом растении. Стареющие листья со слабой фотосинтетической активностью отдают другим органам не только ассимиляты, но и продукты распада структур цитоплазмы.
Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:
Источник
16. Фотосинтез как основа продуктивности с/х растений.
Продуктивность фотосинтеза определяют по накоплению ассимилятов в растении. При этом используют такие методы, как:
— изменение количества сухого вещества высечек из листа через определенный временной промежуток,
— накопление углеводов в листе через определенный временной промежуток,
— изменение теплоты сгорания сухого вещества листьев за период экспозиции их на свету.
Пути повышения продуктивности фотосинтеза.
Основываясь на механизмах влияния внутренних и внешних факторов, действующих на показатели фотосинтетической активности растений, в практике сельского хозяйства используют ряд приемов, позволяющих увеличить интенсивность фотосинтеза и повысить урожайность сельскохозяйственных культур.
Прежде всего это точное соблюдение оптимальной технологии:
— соблюдение режима орошения,
— соблюдение режима минерального питания,
— использование необходимых внекорневых подкормок микроэлементами,
— повышение в защищенном грунте концентрации углекислого газа за счет применения органических удобрений (внесение навоза), использования сухого льда, поддымление парниковых рам.
Соотношение между количеством усвоенного в процессе фотосинтеза углекислого газа и накопленного сухого органического вещества называется коэффициентом эффективности фотосинтеза.
Необходимо учитывать, что на итоговое накопление органического вещества влияют два процесса: фотосинтез и дыхание. Количество накапливаемых органических веществ зависит от интенсивности фотосинтеза и дыхания растений, то есть от положения компенсационной точки. Компенсационная точка характеризует такое состояние растения, когда в нем фотосинтез и дыхание полностью уравновешиваются, т.е. при таких условиях органическое вещество не накапливается.
Накопление органического вещества растением за определенный период или за всю его жизнь следует рассматривать как разницу между количеством созданного на свету органического вещества и израсходованного на дыхание.
Кроме того, в процессе преобразования веществ также может происходить уменьшение массы (например, масса клетчатки на 10% меньше массы глюкозы, из которой она образуется), на накопление органического вещества влияет также опадение или гибель частей растения (цветков, корневых волосков) в период вегетации.
При оптимальных условиях влажности и температурного режима важно также соблюдать оптимальное размещение растений. Для лучшего освещения растений рядки располагают с востока на запад или с северо-востока на юго-запад. Величина урожая в значительной мере зависит от оптимальной структуры посевов.
Структурой посевов называется создаваемая архитектоника сообщества растений, которое характеризуется определенными морфологическими признаками и физиологическими функциями, а оптимальная структура — это такой посев, который имеет высокий КПД фотосинтеза и обеспечивает максимальный урожай. Обычно потери энергии на дыхание составляют 15-25%, но при загущенном посеве нижние, а частью и средние листья становятся не столько синтезирующими, сколько потреблояющими.
Одной из важнейших задач селекции является создание сортов, способных развивать большую фотосинтезирующую поверхность, имеющих высокую продуктивность фотосинтеза и дающих большой биологических и хозяйственный урожай.
В сельском хозяйстве наибольший интерес представляет получение конечного продукта — полезной накопленной биомассы растений, то есть чистой продуктивности фотосинтеза.
Кроме общей чистой продуктивности фотосинтеза определяют и интенсивность работы листьев, направленную на создание хозяйственной части урожая.
Фотосинтетический потенциал растений — это сумма ежедневных показателей площади листьев посева за весь вегетационный период .
Биологический урожай — это сумма суточных приростов за весь вегетационный период.
Хозяйственный урожай составляет ту долю биологического, которая используется человеком.
Коэффициент хозяйственного использования у разных культур может сильно различаться (зерновые культуры и сахарная свекла).
Продуктивность фотосинтеза сельскохозяйственных культур целесообразно оценивать величиной выхода полезной энергии с гектара.
Для определения площади листовой поверхности используют три основных метода:
фотопланиметрирование — когда с помощью специального прибора определяют уменьшение интенсивности светового потока, пропорциональное площади листа,
расчет по высечкам — когда, взвесив несколько высечек известной площади, делят общий вес листа на вес высечек и узнают общую площадь листа.
Источник