Воздушное питание растений (фотосинтез)
Воздушное питание растений (фотосинтез) — процесс образования безазотистых органических веществ (углеводов) растениями из углекислого газа атмосферы и воды под действием солнечного света:
- Питание растений
- Химический состав растений
- Воздушное питание растений (фотосинтез) (EnglishEspañol)
- Минеральное (корневое) питание растений
- Азот в жизни растений
- Фосфор в жизни растений
- Калий в жизни растений
- Диагностика питания растений
Навигация
- Питание растений
- Химический состав растений
- Воздушное питание растений (фотосинтез) (EnglishEspañol)
- Минеральное (корневое) питание растений
- Азот в жизни растений
- Фосфор в жизни растений
- Калий в жизни растений
- Диагностика питания растений
Растения, произрастающие на суше, ежегодно поглощают из атмосферы примерно 20 млрд т углерода в форме углекислого газа или в среднем 1300 кг на 1 га, вся совокупность растений, включая морские водоросли, — около 150 млрд т. Наземные растения перерабатывают 4217 кДж космической солнечной энергии в продукты ассимиляции ежегодно.
Однако коэффициенты использования фотосинтетически активной радиации (ФАР), то есть солнечного света с длиной волны от 380 до 720 нм, на создание органического вещества составляет 47-49% интегральной солнечной радиации. В посевах коэффициенты использования ФАР не превышают 0,5-3%. Максимально возможным для фотосинтеза считается КПД ФАР 28%. Наиболее интенсивное накопление биомассы — до 700 кг/га в сутки — происходит при хороших условиях освещенности, температуры и водоснабжения, высоком уровне обеспеченности питательными веществами и составляет до 14% от общего поступления ФАР за день.
Образующиеся в процессе фотосинтеза простые углеводы служат исходным материалом для синтеза сложных углеводов: сахарозы C12H22O11, крахмала (C6H10O5)n, клетчатки (C6H10O5)n.
Фотосинтетическая деятельность зависит от видовых особенностей растения, возраста отдельных листьев и всего растения, интенсивности и длины волны света, уровня азотного питания.
Только 2-4% солнечной энергии, попадающей на поверхность вегетирующих растений, используется для синтеза органических веществ. Остальная часть расходуется на транспирацию и отражение. Растение испаряет воду для охлаждения. Сам процесс испарения связан с большой затратой энергии. На испарение листьями расходуется более 25% солнечной энергии, в южных районах — до 70-95%, что примерно в 10-45 раз больше, чем запасается в урожае.
Одна из задач современной науки — изыскание способов повышения коэффициента использования солнечной энергии.
«Если последствия хищнического хозяйства, непроизвольно удаляющего из почвы питательные вещества, и поправимы тем или иным способом, путем удобрения земли, то окончательно непоправимо только расточительное, неумелое пользование главным источником народного богатства — солнечным светом».
К.А. Тимирязев
Для образования сложных органических веществ из первичных продуктов фотосинтеза затрачивается энергия, образующаяся в растении в результате дыхательных процессов, то есть окисление углеводов кислородом. Этот процесс противоположен фотосинтезу:
Выделяющаяся при дыхании энергия используется на:
- синтез других органических соединений;
- поглощение корнями солей и воды из почвы и передвижение их по частям растения;
- совершение корнями работы в почве при их росте.
Энергия дыхания используется и для преодоления ростками сопротивления почвы при прорастании.
Энергия, выделяемая в процессе дыхательного окисления веществ переходит в специфическую форму накопления энергии — макроэргические фосфатные связи аденозинтрифосфорной кислоты (АТФ).
Макроэргические соединения можно разделить на две группы:
- глицерофосфат, 3-фосфоглицериновая кислота, глюкозо-6-фосфат, фруктозо-6-фосфат. Соединения этой группы накапливают от 0,8 до 3,0 ккал на 1 моль вещества;
- аденозинтрифосфорная кислота (АТФ), аденозиндифосфорная кислота (АДФ), 1,3-дифосфоглицериновая кислота, фосфоэнолпировиноградная кислота. Соединения этой группы накапливают от 6 до 16 ккал на 1 моль.
Во всех реакциях обмена веществ энергия используется в сопряженных процессах освобождения и использования энергии, а передача энергии от одной реакции к другой может быть только, когда две реакции идут последовательно и имеют общие промежуточные продукты. Так, образование сахарозы может протекать сопряжённо с гидролизом АТФ:
АТФ + глюкоза → глюкозофосфат + АДФ (ΔF = -7000);
глюкозофосфат + фруктоза → сахароза + H3PO4.
АТФ + глюкоза + фруктоза → сахароза + АДФ + H3PO4 (ΔF = -7000).
Аналогично протекают процессы образования крахмала из глюкозы, белков из аминокислот.
В сухие жаркие годы с суховеями фотосинтез у растений возможен только в ранние утренние и вечерние часы. В остальное время происходит потеря пластических веществ и энергии на сопротивление и защитные реакции неблагоприятным условиям среды (дефициту влаги и повышенной температуре). При этом нарушается баланс между образованием и расходованием макроэргических фосфорных соединений, снижается энергетический потенциал, повышается окислительный потенциал в клетке, что приводит к окислительному разрушению углеводов, белков, в связи с чем в тканях растительного организма накапливается аммиак и наступает их отравление.
Было отмечено положительное влияние фосфора и калия на обводненность коллоидов протоплазмы, что приводит к снижению расхода влаги на транспирацию. Ткани растений, обеспеченные фосфором, характеризуются большой водоудерживающей способностью. У таких растений более устойчивый водообмен, обусловленный увеличением содержания осмотически- и коллоидно-связанной воды, повышенной гидратацией компонентов протоплазмы. Особенно действие фосфора проявляется в условиях недостаточного водообеспеченности в ранние периоды развития растений.
На современной стадии развития сельскохозяйственной науки, возможности регулирования процессов фотосинтеза ограничены. Ассимиляционная поверхность листьев в посевах может меняться от 5-6 до 40-50 тыс. м 2 на 1 га. Изреженные посевы поглощают только 20-25% падающей на них ФАР и используют на фотосинтез только 1-2% от поглощенной. При достаточной плотности посевов за вегетационный период растения могут поглощать 50-60% падающей ФАР и накапливать в органических веществах урожая до 2-3% от поглощенной энергии. Теоретически этот показатель может быть повышен до 20-25%. Если коэффициент использования поглощенной энергии на фотосинтез повысить до 6-8%, это приведет к сокращению расхода воды на создание 1 т сухого вещества с 400-500 до 75-100 т.
Источник
Фотосинтез. Воздушное питание растений.
Фотосинтез (от лат. «фото» -свет, «синтез» — соединение) — основа воздушного питания растений. При фотосинтезе зеленые растения извлекают энергию из солнечного света и создают органические вещества.
Как же осуществляется фотосинтез?
Через устьичные щели в лист поступает углекислый газ. При попадании солнечных лучей на поверхность листа в его хлоропластах происходит сложный процесс: из углекислого газа и воды, всасываемой корнями, образуется органическое вещество — сахар (глюкоза). При этом выделяется кислород. Частично он используется растениями для дыхания, а излишки поступают в воздух также через устьица. Сахар затем превращается в крахмал. Крахмал в воде не растворяется. Образование сахара на свету при участии воды и углекислого газа происходит только в хлоропластах и только за счет энергии солнечного света.
Следовательно, процесс образования в хлоропластах на свету органических веществ из воды и углекислого газа с выделением кислорода называется фотосинтезом (рис.1).
История открытия фотосинтеза
Первые опыты по изучению питания растений провел в 1630 г. голландский врач Ян Батист ван Гельмонт. Он доказал, что растения не получают органические вещества в готовом виде из почвы, а сами образуют их (рис.2)
А швейцарский естествоиспытатель Жан Сенебье доказал, что растения используют углекислый газ.
Русский ученый К. А. Тимирязев (1843-1920) впервые описал роль хлорофилла (пигмент, который находится в хлоропластах) в фотосинтезе. Он назвал фотосинтез космическим процессом. Растения используют космическую энергию Солнца. Жизнь как явление существует на нашей планете, только благодаря фотосинтезу, обеспечивающему питанием и кислородом все живое. Может, благодаря фотосинтезу наша планета единственная в Космосе, населенная живыми существами?
Опыт доказывающий образование крахмала в листьях
Доказать процесс образования крахмала в листьях можно путем постановки простого опыта (рис.3)
Комнатное растение, желательно пеларгонию или примулу, хорошо поливают и ставят в темное место на 2-3 дня. За это время растением расходуется ранее образованный в листьях крахмал. Через 2—3 дня несколько листьев на растении закрывают с двух сторон черной бумагой так, чтобы часть поверхности листа оставалась открытой. Растение выставляют на свет.
Через сутки бумагу убирают, лист срывают, опускают его на одну минуту в кипяток, затем переносят в посуду с горячим спиртом, который в целях предосторожности подогревается на водяной бане. Обесцвеченный лист ополаскивают холодной водой и помещают в плоский сосуд. Расправленный лист заливают слабым раствором йода. Через 2—3 мин можно увидеть, что закрытая часть листа не изменила своего цвета, а та часть листа, на которую попадал свет, окрасилась в синий цвет.
Обработка йодом помогает обнаружить в клетках крахмал. Следовательно, крахмал образуется в листьях только на свету.
В ходе фотосинтеза растение использует углекислый газ и выделяет кислород, который поддерживает горение. Это можно подтвердить следующим опытом.
Следует взять две банки (0,8 л) из светлого стекла и поместить в каждую по 5-6 веточек традесканции. Чтобы растения не завяли, в банки наливают немного воды. Затем небольшие свечи, укрепленные на проволоке, зажигают, опускают в банки и закрывают их. Вскоре свечи погаснут, что указывает на отсутствие в банке кислорода и на увеличение содержания углекислого газа, образовавшегося в результате горения свеч. Свечи вынимают, закрывают обе банки стеклом и выставляют одну на свет, а другую — в темное место. На следующий день банки открывают и опять опускают туда на проволоке зажженные свечи. В банке, стоявшей на свету, свеча горит, а в банке, находившейся в темном месте, — гаснет (рис.4).
Таким образом, вы снова убедились, что зеленые растения поглощают углекислый газ и выделяют кислород, который поддерживает горение, только на свету, т. е. в процессе фотосинтеза. А при дыхании растения, как и все живые организмы, поглощают кислород, а выделяют углекислый газ.
Подводим итог
Фотосинтез — основа воздушного питания растений. При фотосинтезе зеленые растения с помощью хлорофилла извлекают энергию из солнечного света и с ее помощью создают органические вещества из углекислого газа и воды. Как побочный результат при фотосинтезе выделяется кислород.
Источник