Гормональная система растений это

80. Гормональная система растений.

ФИТОГОРМОНЫ, органические вещества небольшого молекулярного веса, образуемые в малых количествах в одних частях многоклеточных растений и действующие на другие их части как регуляторы и координаторы роста и развития. Гормоны появляются у сложных многоклеточных организмов, в том числе растений, в качестве специализированных регуляторных молекул для осуществления важнейших физиологических программ, требующих координированной работы различных клеток, тканей и органов, нередко значительно удаленных друг от друга. Фитогормоны осуществляют биохимическую регуляцию — наиболее важную систему регуляции онтогенеза у многоклеточных растений. По сравнению с гормонами животных специфичность фитогормонов выражена слабее, а действующие концентрации выше. В отличие от животных, у растений нет специализированных органов (желез), вырабатывающих гормоны. Известно 5 основных групп фитогормонов, широко распространенных не только среди высших, но и низших многоклеточных растений. Это ауксины, цитокинины, гиббереллины, абсцизины и этилен. Каждая группа фитогормонов производит свое характерное действие, сходное у растений разных видов. Фитогормоны контролируют все этапы онтогенеза растений. Деление и растяжение клеток, лежащие в основе всех процессов роста и морфогенеза, находятся у растений под контролем ауксинов и цитокининов, поэтому полное отсутствие этих фитогормонов для растений летально. Общая форма растения определяется ауксинами и цитокининами, а также гиббереллинами. Ауксины верхушки побега подавляют рост боковых почек (апикальное доминирование), тогда как цитокинины это доминирование преодолевают, вызывая ветвление. Гиббереллины усиливают рост растения, активируя апикальные и вставочные меристемы. Ауксины способствуют образованию корней и определяют адаптивные изгибы растения в соответствии с направлением света или вектора силы тяжести (фото- и геотропизм). Формирование аппарата фотосинтеза и транспирация растений регулируются гормонами-антагонистами — цитокининами и абсцизовой кислотой: цитокинины вызывают дифференцировку хлоропластов и открывание устьиц, тогда как абсцизовая кислота подавляет оба эти процесса. Для многих растений те или иные фитогормоны (гиббереллины, цитокинины, этилен) могут быть индукторами или стимуляторами цветения. Последовательное участие фитогормонов необходимо для нормального формирования плодов и семян. Завязывание и рост плодов стимулируются ауксинами, гиббереллинами и цитокининами, выделяемыми семяпочками или семенами. Созревание и опадение плодов, а также листьев вызываются этиленом и абсцизовой кислотой. Стрессовые воздействия на растения вызывают всплеск количества этилена, а водный дефицит — абсцизовой кислоты. Цитокинины, гиббереллины и, в ряде случаев, этилен способствуют прорастанию семян многих растений и повышают их всхожесть.

Читайте также:  Комнатное растение кошачий глаз

81. Темновые и световые реакции фотосинтеза.

Процесс фотосинтеза состоит из двух последовательных и взаимосвязанных этапов: светового (фотохимического) и темнового (метаболического). На первой стадии происходит преобразование поглощенной фотосинтетическими пигментами энергии квантов света в энергию химических связей высокоэнергетического соединения АТФ и универсального восстановителя НАДФН — первичных продуктов фотосинтеза, или так называемой «ассимиляционной силы». В темновых реакциях фотосинтеза происходит использование образовавшихся на свету АТФ и НАДФН в цикле фиксации углекислоты и ее последующего восстановления до углеводов. У всех фотосинтезирующих организмов фотохимические процессы световой стадии фотосинтеза происходят в особых энергопреобразующих мембранах, называемых тилакоидными, и организованы в электрон-транспортную цепь. Темновые реакции фотосинтеза осуществляются вне тилакоидных мембран (в цитоплазме у прокариот и в строме хлоропласта у растений). Световая и темновая стадии фотосинтеза разделены в пространстве и во времени. Фотохимические реакции фотосинтеза. Общее представление о фотосистемах.

Фотохимический этап фотосинтеза включает ряд последовательно протекающих процессов, локализованных в тилакоидных мембранах. Пигменты, специфически связанные с белками фотосинтетических мембран, и другие компоненты, необходимые для протекания реакций поглощения света и электронного транспорта, образуют надмолекулярные комплексы — фотосистему I (ФС I) и фотосистему II (ФС II). В составе каждой фотосистемы различают: реакционный центр, в котором происходят быстрые реакции первичного разделения зарядов; комплекс компонентов, по которым передается электрон от реакционного центра, и последний окисляется (электронтранспортная цепь); комплекс компонентов, за счет работы которых происходит фотоокисление воды и восстановление реакционного центра. Первый этап преобразования света в свободную энергию химических связей включает поглощение фотонов светособирающими комплексами (антеннами), связанными с ФС I и ФС II (ССКI и ССКII). Затем энергия возбуждения мигрирует по пигментам антенны (от более коротковолновых форм хлорофилла к более длинноволновым) и захватывается ловушкой — специализированным реакционным центром, который расположен в центре комплекса. Реакционные центры образованы самыми длинноволновыми формами хлорофилла а [с максимумом поглощения 700 нм (Р700) в ФС I и 680 нм (Р680) в ФС II]. Возбужденные Р700* и Р680* — очень сильные восстановители и быстро передают электрон на близко расположенную молекулу акцептора, а сами при этом окисляются.

Читайте также:  Rgb лампы для растений

Источник

3. Гормональная система растений

Фитогормоны образуются в процессе обмена веществ растений и оказывают в очень малых количествах регуляторное и координирующее влияние на физиологические процессы в разных органах растения. Различают стимуляторы и ингибиторы роста. Однако один и тот же гормон может стимулировать один процесс и ингибировать другой, а стимуляторы роста, применяемые в сверхоптимальных дозах, способны подавлять ростовые процессы. Гормоны полифункциональны, т.е. включают целые физиологические программы.

Ауксины

Главным представителем ауксинов в растениях является индолил-3-уксусная кислота (ИУК), ее количество в растениях колеблется от 1 до 100 мг/кг сырой массы. Она синтезируется из триптофана в верхушке (апексе) побега, а также растущих зародышах, семяпочках и семядолях. Движение ауксина в стебле и корне полярно. Разрушается необратимо ИУК-оксидазой или переходит в неактивное состояние, образуя комплексы с сахарами или аминокислотами.

Физиологические эффекты ауксинов: 1)Ауксин стимулирует растяжение клеток: ИУК активирует протонную помпу в плазмалемме, что приводит к закислению и разрыхлению клеточной стенки и тем самым способствует росту клеток растяжением.

2) Еще один эффект ауксинов — аттрагирующий (от латинского «attractio» — «привлечение»). Клетки меристемы «привлекают» к себе питательные вещества: сахарозу, аминокислоты, нуклеотиды, неорганические ионы, воду и др. Аттрагирующий эффект проявляется в зоне активных делений клеток.

3) Совместно с цитокининами ауксины вызывают деления клеток, которые также происходят в определенных клетках апекса побега.

4) С растяжением клеток в субапикальном районе связаны более сложные явления — тропизмы. Главная задача растягивающихся клеток — правильно ориентировать растущую верхушку побега в пространстве. При боковом освещении ауксины перераспределяются на теневую сторону, вызывая неравномерное растяжение и наклон в сторону света- фототропизм (или гелиотропизм). Если побег изменил положение в пространстве (наклонился, повален ветром и т.д.), то ауксины перераспределяются на физически нижнюю сторону. Субапикальная зона изгиба стремится вновь направить рост по вертикали. Это явление получило название гравитропизма (или геотропизма).

Читайте также:  Мое любимое растение хризантема

5) Под действием ауксина формируются проводящие пучки (преимущественно ксилема), поскольку стеблю необходим приток питательных веществ от корня.

6) В пазухах листьев создаются благоприятные условия для закладки и развития боковых побегов (почек). Однако, у большинства растений боковые побеги не развиваются пока главный побег активно растет. Подавление роста боковых почек в пользу апикальной меристемы получило название апикального доминирования. Если удалить верхушку побега, рост боковых побегов активизируется.

7) Ауксин влияет и на корневую систему. Поскольку большое количество ауксинов является сигналом о росте побегов, для обеспечения их роста растение должно образовать побольше корней. Обработка ауксинами вызывает закладку придаточных корней на стебле и боковых корней на главном корне (ризогенез). Этим эффектом часто пользуются в сельском хозяйстве, обрабатывая трудноукореняемые черенки растворами ауксинов.

Стимуляция развития бессемянных плодов — один из известных физиологических эффектов ауксинов. Аттрагирующий эффект ауксинов приводит к тому, что чем больше семян образовалось в плоде (т.е чем больше точек синтеза ауксинов), тем лучше плод обеспечивается питательными веществами. Обрабатывая бессемянные плоды раствором ауксина, можно создать у растения «иллюзию», что семена в них есть, туда направляются питательные вещества и это стимулирует развитие плодов.

Если ауксинов слишком много, то начинается синтез гормона-антагониста — этилена. Этилен он угнетает рост побегов в длину, способствует опадению листьев, ингибирует рост главного корня. Это свойство позволило использовать синтетический ауксин — 2.4-Д — в качестве гербицида, селективно убивающего двудольные.

Источник

Оцените статью