Коэффициент трения таблица дерево

Коэффициенты трения между поверхностями различных материалов

Аналогично предыдущему из зависимости (3.12) может быть определена величина избыточного давления скоростного напора, а из зависимостей (3.6) и (3.7) скорость воздушного потока и избыточное давление на фронте ударной волны, при которых произойдет опрокидывание объекта:

Опрокидывание закрепленного объекта будет иметь место при выполнении условия:

Fh³mga+Fk2a, (3.14)

где Fk – реакция крепления объекта, определяемая как суммарное усилие болтов, работающих на разрыв.

Ударная перегрузка (инерционное разрушение) типична для оборудования, имеющего чувствительные к ударным ускорениям элементы, – измерительных приборов, компьютеров и т.п. В этом случае при нагружении объекта ударной волной на него действует сила

Fлоб@(DPf+DPck)S . (3.15)

Учитывая, что сила инерции равна сумме действующих на объект сил и реакций связи (для незакрепленного объекта силы трения), можно написать

ma= FлобFTp, а с учетом, что FTpFлаб,

a= Fлоб|m.

Сравнивая полученную величину ускорения с допустимой для данного объекта и используя ранее приведенные зависимости (3.6) и (3.7), можно найти значения DPck и DPf, при которых объект получит инерционное разрушение. Допустимые перегрузки ng= указываются в технических условиях для каждого конкретного объекта. Инерционные перегрузки, как правило, связаны с сильными повреждениями объекта.

Определить при какой величине избыточного давления DPf произойдет смещение незакрепленного токарного станка относительно бетонного фундамента и получение им средних повреждений. Длина станка l=3000 mm, ширина b=1000 mm, высота H=1000 mm, масса 500 кг.

Коэффициент трения чугуна по бетону f=0,35 (см. табл. 3.9). Предполагаем, что ударная волна падает перпендикулярно длинной стороне станка. Тогда площадь миделя S=l·H=3,0·1,0=3,0 м 2 , коэффициент аэродинамического сопротивления Сх=1,3, поскольку станок может быть аппроксимирован параллелепипедом (см. табл 3.8).

Давление скоростного напора, приводящее к смещению станка

Избыточное давление на фронте ударной волны

Определить при каком значении избыточного давления DРф произойдет опрокидывание станка, приведенного в предыдущем примере, и получение им сильных повреждений.

Решение. Высота приложения силы h=H/2=0,5 м. Площадь миделя S=l·H=3,0. плечо силы тяжести а=b/2=0,5 м.

Давление скоростного напора, при котором возможно опрокидывание станка

Избыточное давление на фронте ударной волны

Определить величину избыточного давления, при которой прибор получит инерционное повреждение. Габариты прибора: длина l=0,5 м, ширина а=0,25 м, высота H=0,2 м. Масса прибора 20 кг. Допустимое ускорение при ударе ag=50 м/с 2 .

Решение. Лобовая сила, не приводящая к ударной перегрузке Fлоб=mag=20·50=1000H.

Лобовое давление, при превышении которого прибор получит инерционное повреждение

Из выражения , определяем величину избыточного давления

Таким образом, при превышении ΔРф=9,7 кПа прибор получит сильное повреждение.

При действии механических поражающих факторов поражаются не только люди и основные производственные фонды (ОФП), но и оборотные средства, без которых производство невозможно. Оборотные средства разнообразны. К ним относятся готовая продукция, полуфабрикаты, комплектующие, сырье, материалы и т.д. В результате действия поражающих факторов оборотные средства так же , как и ОФП, могут получать различные степени повреждения или утрачиваться. Последствия действия оцениваются в соответствии с изложенным выше. Количественной характеристикой последствий действия на оборотные средства поражающих факторов для ОЭ являются пределы его устойчивости по оборотным средствам. В качестве таких пределов можно рассматривать минимальные количества j-x оборотных средств, при которых возможно продолжение производства в течении заданного времени. Условие устойчивости при этом записывается в виде Nоб j min≤ ( Nоб j Nоб j y), где Nоб j min – предел устойчивости ОЭ по j-м оборотным средствам; Nоб j y – утраченное при ЧС количество j-x оборотных средств; Nоб j нормативное количество i-х оборотных средств.

Читайте также:  Какие деревья зимой сбрасывают листья

Условие устойчивости ОЭ по i-му поражающему фактору может быть записано в виде: , где ‑ предел устойчивости ОЭ по i-му поражающему фактору; ‑ возможная величина нагрузки, создаваемая i-м поражающим фактором.

  1. Правовые основы устойчивости ОЭ в ЧС. Декларация безопасности промышленного объекта и нормы проектирования инженерно-технических мероприятий гражданской обороны, их назначение и общая характеристика(24 вопрос)

Источник

Коэффициент трения скольжения

Коэффициент трения скольжения (k) – отношение силы трения к силе реакции опоры.

В таблице представлены значения коэффициента трения скольжения различных материалов.

Таблица — Коэффициенты трения скольжения различных материалов
Материал k
Бронза по бронзе 0,2
Бронза по стали 0,18
Дерево по льду 0,035
Дерево сухое по дереву 0,25-0,5
Деревянные полозья по снегу и льду 0,035
Деревянные полозья, обитые железом, по снегу и льду 0,02
Дуб по дубу вдоль волокон 0,48
Дуб по дубу поперек волокон одного и вдоль волокон другого 0,34
Железо по льду 0,020
Канат пеньковый мокрый по дубу 0,33
Канат пеньковый сухой по дубу 0,53
Кожаный ремень влажный по металлу 0,36
Кожаный ремень влажный по дубу 0,27-0,38
Кожаный ремень сухой по металлу 0,56
Кожаный ремень, смазанный жиром, по металлу 0,23
Колесо со стальным бандажом по стальному рельсу 0,16
Лед по льду 0,028
Медь по чугуну 0,27
Металл влажный по дубу 0,24-0,26
Металл сухой по дубу 0,5-0,6
Металл по металлу (кроме пары сталь/сталь) 0,15-0,20
Металл по металлу при смазке 0,07-0,10
Подшипник скольжения при смазке 0,02-0,08
Сталь по железу 0,19
Сталь по льду (коньки) 0,02-0,03
Сталь по стали 0,18
Сталь (или чугун) по феродо и райбесту 0,25-0,45
Сталь по чугуну 0,16
Точильный камень по стали 0,94
Фторопласт по нержавеющей стали 0,064-0,080
Фторопласт-4 по фторопласту 0,052-0,086
Чугун по бронзе 0,21
Чугун по чугуну 0,16
Шина по влажному асфальту (до аквапланирования) 0,35-0,45
Шина по сухому асфальту 0,50-0,75
Шина по влажной грунтовой или гравийной дороге (до аквапланирования) 0,30-0,40
Шина по твердому грунту 0,4-0,6
Шина по гладкому льду 0,15-0,25
Шина по чугуну 0,83

Литература

Источник

Коэффициенты трения покоя и трения качения

Сила трения качения описывается как: Fтр=kтр(Fn/r) , где kтр- коэффициент трения а Fn — прижимающая сила, а r — радиус колеса. Размерность коэффициента трения качения, естественно, [длина]. Ниже приводится таблица полезных диапазонов коэффициентов трения качения для различных пар материалов в см.

Читайте также:  Занятие рисование дерева младшая группа

Коэффициенты трения скольжения для различных материалов

Трущиеся поверхности k
Бронза по бронзе 0,2
Бронза по стали 0,18
Дерево сухое по дереву 0,25 — 0,5
Деревянные полозья по снегу и льду 0,035
то же, но полозья обиты стальной полосой 0,02
Дуб по дубу вдоль волокон 0,48
тоже поперек волокон одного тела и вдоль волокон другого 0,34
Канат пеньковый мокрый по дубу 0,33
Канат пеньковый сухой по дубу 0,53
Кожаный ремень влажный по металлу 0,36
Кожаный ремень влажный по дубу 0,27 — 0,38
Кожаный ремень сухой по металлу 0,56
Колесо со стальным бандажом по стальному рельсу 0,16
Лед по льду 0,028
Медь по чугуну 0,27
Металл влажный по дубу 0,24-0,26
Металл сухой по дубу 0,5-0,6
Подшипник скольжения при смазке 0,02-0,08
Резина (шины) по твердому грунту 0,4-0,6
Резина (шины) по чугуну 0,83
Смазанный жиром кожаный ремень по металлу 0,23
Сталь (или чугун) по феродо* и райбесту* 0,25-0,45
Сталь по железу 0,19
Сталь по льду (коньки) 0,02-0,03
Сталь по стали 0,18
Сталь по чугуну 0,16
Фторопласт по нержавеющей стали 0,064-0,080
Фторопласт-4 по фторопласту 0,052-0,086
Чугун по бронзе 0,21
Чугун по чугуну 0,16
Примечание. Звездочкой отмечены материалы, применяемые в тормозных и фрикционных устройствах.

Таблица коэффициентов трения покоя (коэффициентов сцепления) для различных пар материалов.

Химически чистые металл по металлу

Сплавы, по стали

Стальные поверхности высокой твердости при смазке:

Неметаллические материалы

Коэффициенты трения качения.

Сила трения качения описывается как:

Fтр=kтр(Fn/r) , где kтр— коэффициент трения а Fn — прижимающая сила, а r — радиус колеса.

Размерность коэффициента трения качения, естественно, [длина].

Ниже приводится таблица полезных диапазонов коэффициентов трения качения для различных пар материалов в см.

Коэффициенты трения качения.

Стальное колесо по стали 0,001-0,05
Дереянное колесо по дереву 0,05-0,08
Стальное колесо по дереву 0,15-0,25
Пневматичекая шина по асфальту 0,006-0,02
Деревянное колесо по стали 0,03-0,04
Шарикоподшипник (подшипник качения) 0,001-0,004
Роликоподшипник (тоже качения) 0,0025-0,01
Шарик твердой стали по стали 0,0005-0,001

Сила трения скольжения — силы, возникающие между соприкасающимися телами при их относительном движении. Если между телами отсутствует жидкая или газообразная прослойка (смазка), то такое трение называется сухим. В противном случае, трение называется «жидким». Характерной отличительной чертой сухого трения является наличие трения покоя.

Опытным путём установлено, что сила трения зависит от силы давления тел друг на друга (силы реакции опоры), от материалов трущихся поверхностей, от скорости относительного движения и не зависит от площади соприкосновения. (Это можно объяснить тем, что никакое тело не является абсолютно ровным. Поэтому истинная площадь соприкосновения гораздо меньше наблюдаемой. Кроме того, увеличивая площадь, мы уменьшаем удельное давление тел друг на друга.) Величина, характеризующая трущиеся поверхности, называется коэффициентом трения, и обозначается чаще всего латинской буквой «k» или греческой буквой «μ». Она зависит от природы и качества обработки трущихся поверхностей. Кроме того, коэффициент трения зависит от скорости. Впрочем, чаще всего эта зависимость выражена слабо, и если большая точность измерений не требуется, то «k» можно считать постоянным.

Читайте также:  Возлюбленный яблонь между лесными деревьями

В первом приближении величина силы трения скольжения может быть рассчитана по формуле:

F_< ext<TP data-lazy-src=

— сила нормальной реакции опоры.

По физике взаимодействия трение принято разделять на:

  • Сухое, когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями/смазками — очень редко встречающийся на практике случай. Характерная отличительная черта сухого трения — наличие значительной силы трения покоя.
  • Сухое с сухой смазкой (графитовым порошком)
  • Жидкостное, при взаимодействии тел, разделённых слоем жидкости или газа (смазки) различной толщины — как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость;
  • Смешанное, когда область контакта содержит участки сухого и жидкостного трения;
  • Граничное, когда в области контакта могут содержатся слои и участки различной природы (окисные плёнки, жидкость и т. д.) — наиболее распространённый случай при трении скольжения.

В связи со сложностью физико-химических процессов, протекающих в зоне фрикционного взаимодействия, процессы трения принципиально не поддаются описанию с помощью методов классической механики.

При механических процессах всегда происходит в большей или меньшей степени преобразование механического движения в другие формы движения материи (чаще всего в тепловую форму движения). В последнем случае взаимодействия между телами носят названия сил трения.

Опыты с движением различных соприкасающихся тел (твёрдых по твёрдым, твёрдых в жидкости или газе, жидких в газе и т. п.) с различным состоянием поверхностей соприкосновения показывают, что силы трения проявляются при относительном перемещении соприкасающихся тел и направлены против вектора относительной скорости тангенциально к поверхности соприкосновения. При этом всегда происходит нагревание взаимодействующих тел.

Силами трения называются тангенциальные взаимодействия между соприкасающимися телами, возникающие при их относительном перемещении. Силы трения возникающие при относительном перемещении различных тел, называются силами внешнего трения.

Силы трения возникают и при относительном перемещении частей одного и того же тела. Трение между слоями одного и того же тела называется внутренним трением.

В реальных движениях всегда возникают силы трения большей или меньшей величины. Поэтому при составлении уравнений движения, строго говоря, мы должны в число действующих на тело сил всегда вводить силу трения F тр.

Тело движется равномерно и прямолинейно, когда внешняя сила уравновешивает возникающую при движении силу трения.

Для измерения силы трения, действующей на тело, достаточно измерить силу, которую необходимо приложить к телу, чтобы оно двигалось без ускорения.

Источник

Оцените статью