Лес дерево дискретная математика

3.9. Деревья и леса

Каждая компонента связности леса – дерево, следовательно, для -связного леса существует дизъюнктное разбиение на деревьев.

Пример 1. Граф не является деревом, не является лесом. Граф — дерево. Граф — лес.

Лемма. Если граф – дерево, то каждое его ребро является мостом.

Доказательство.В параграфе 3.6 было доказано, что если ребро графа не содержится ни в одном цикле, то оно является мостом. Дерево граф ациклический, следовательно, каждое его ребро мост.■

Теорема (основная теорема о деревьях). Для графа следующие утверждения равносильны:

  1. Граф— дерево.
  2. ациклический и.
  3. связный и.
  4. связный и каждое его ребро является мостом.
  5. Любые две вершины графаможно соединить, притом единственной, простой цепью.
  6. ациклический, и добавление к нему нового ребра приводит к образованию единственного простого цикла.

Доказательство.Доказательство проведем по следующей схеме:. . Индукцией по числу ребер проверим, что для любого дерева выполняется равенство. Базис индукции.Пусть, тогда, и равенствовыполнено. Индуктивный переход.Предположим, что требуемое равенство выполняется для любого дерева с числом ребер меньшим либо равным. Докажем, что оно справедливо и для дерева с числом ребер. Удалим из графапроизвольное ребро .Согласно лемме, ребро — мост. По теореме о мостах. Следовательно, графсостоит из двух компонент связности,и , каждая из которых – дерево с числом ребер меньшим либо равным. Для каждой компоненты связности справедливо предположение индукции, т.е. выполнены равенстваи. Складывая эти равенства почленно, получим:. Или. . Докажем, что если граф ациклический и, то граф связный. Будем рассуждать от противного, т.е. предположим, что найдется ациклический граф, число ребер которого на единицу меньше числа вершин, который связным не является. Пусть,, — число компонент связности графа. Каждая компонента связности — дерево. Переходуже доказан, следовательно, для каждой компоненты связностиможем записать:. Просуммировав по, получим: . Или . Так как , то пришли к противоречию с условием. Следовательно, наше предположение было неверным. . Докажем, что если граф связный и, то каждое его ребро является мостом. Будем рассуждать от противного. Предположим, что найдется связный граф, такой что, в котором есть ребро , не являющееся мостом. Тогда графсвязный и . То есть для связного графа выполняется условие, что противоречит следствию теоремы о знаке цикломатического числа (см. параграф 3.7). . Из связности графа вытекает, что любые две его вершины можно соединить маршрутом, и, следовательно, простой цепью. Докажем, что эта простая цепь единственна. Доказательство проведем от противного. Предположим, что найдется связный граф, все ребра которого — мосты, такой, что в нем есть две вершиныи , соединенные двумя различными простыми цепямии. Поскольку цепииразличны, то имеется ребро , входящее в цепьи не входящее в цепь. Пусть и— фрагменты цепи. Склеим инвертированный фрагмент, цепьи инвертированный фрагмент. Получим на графе— маршрут, не содержащий ребра . Из этого маршрута выделим-простую цепь и склеим ее с цепью . В результате получим цикл, содержащий , а это противоречит тому, что ребро — мост. . Пусть для графавыполнено условие 5. Проверим сначала, что граф не содержит циклов. Будем рассуждать от противного. Предположим, что на графеимеется цикл. Пусть — одно из ребер этого цикла и вершиныи — концы этого ребра. Тогда— простая цепь, соединяющая вершиныи . Обозначим ее. Удалим из графаребро . Поскольку ребра циклов не являются мостами и графсвязный, то графтакже будет связным. Следовательно, на графесуществует— маршрут. Выделим из этого маршрута-простую цепь и обозначим ее. Таким образом мы показали, что на графеесть две простые цепи, соединяющие вершиныи :и, что противоречит условию 5. Покажем, что добавление к графу нового ребра приводит к образованию, притом единственного, цикла. Возьмем на графедве произвольные вершиныи и соединим их новым ребром; получим граф. По условию на графе имеется единственная простая-цепь. Склеив ее с цепью, получим на графепростой цикл. Докажем, что этот цикл единственный. Предположим, что при добавлении ребраобразовалось два простых цикла. Тогда, удалив из каждого из них ребро, получим на графедве простые-цепи, а наличие двух -цепей противоречит условию. . Будем рассуждать от противного, т.е. предположим, что существует несвязный граф, для которого выполнено условие 6. Возьмем на этом графе две вершины, лежащие в разных компонентах связности, и соединим их ребром. В результате образуется граф, для которого реброявляется мостом и, следовательно, не содержится ни в одном цикле. Таким образом, добавление ребране привело к образованию цикла, что противоречит условию 6.■ Следствие 1.Неодноэлементное дерево имеет не менее двух висячих вершин.Доказательство.Рассмотрим произвольное дерево, имеющее не менее двух вершин. Представим множество его вершинв виде, где— множество висячих вершин этого дерева. Тогда . Но , поэтому . Откуда . ■ Следствие 2.Если граф-связный лес, то. Последнее следствие рекомендуем доказать самостоятельно.

Читайте также:  Капсулы муравьиного дерева применение

Источник

Теория графов. Термины и определения в картинках

В этой статье мы познакомимся с основными терминами и определениями Теории графов. Каждый термин схематично показан на картинках.

Самый объёмный модуль на курсе «Алгоритмы и структуры данных» посвящён теории графов.

Граф — это топологичекая модель, которая состоит из множества вершин и множества соединяющих их рёбер. При этом значение имеет только сам факт, какая вершина с какой соединена.

Например, граф на рисунке состоит из 8 вершин и 8 рёбер.

Очень многие задачи могут быть решены используя богатую библиотеку алгоритмов теории графов. Для этого достаточно лишь принять объекты за вершины, а связь между ними — за рёбра, после чего весь арсенал алгоритмов теории графов к вашим услугам: нахождение маршрута от одного объекта к другому, поиск связанных компонент, вычисление кратчайших путей, поиск сети максимального потока и многое другое.

В этой статье мы познакомимся с основными терминами и определениями теории графов. На курсе “Алгоритмы и Структуры данных” в компании Отус “Теория графов” изучается в самом объёмном модуле из 6 вебинаров, где мы изучаем десяток самых популярных алгоритмов.

Вершина — точка в графе, отдельный объект, для топологической модели графа не имеет значения координата вершины, её расположение, цвет, вкус, размер; однако при решении некоторых задачах вершины могут раскрашиваться в разные цвета или сохранять числовые значения.

Ребро — неупорядоченная пара двух вершин, которые связаны друг с другом. Эти вершины называются концевыми точками или концами ребра. При этом важен сам факт наличия связи, каким именно образом осуществляется эта связь и по какой дороге — не имеет значения; однако рёбра может быть присвоен “вес”, что позволит говорить о “нагруженном графе” и решать задачи оптимизации.

Читайте также:  Перекапывать ли под деревьями

Инцидентность — вершина и ребро называются инцидентными, если вершина является для этого ребра концевой. Обратите внимание, что термин “инцидентность” применим только к вершине и ребру.

Смежность вершин — две вершины называются смежными, если они инцидентны одному ребру.

Смежность рёбер — два ребра называются смежными, если они инцедентны одной вершине.

Говоря проще — две вершины смежные, если они соединены ребром, два ребра смежные — если они соединены вершиной.

Петля — ребро, инцидентное одной вершине. Ребро, которое замыкается на одной вершине.

Псевдограф — граф с петлями. С такими графами не очень удобно работать, потому что переходя по петле мы остаёмся в той же самой вершине, поэтому у него есть своё название.

Кратные рёбра — рёбра, имеющие одинаковые концевые вершины, по другому их называют ещё параллельными.

Мультиграф — граф с кратными рёбрами.

Псевдомультиграф — граф с петлями и кратными рёбрами.

Степень вершины — это количество рёбер, инцидентных указанной вершине. По-другому — количество рёбер, исходящих из вершины. Петля увеливает степень вершины на 2.

Изолированная вершина — вершина с нулевой степенью.

Висячая вершина — вершина со степенью 1.

Подграф. Если в исходном графе выделить несколько вершин и несколько рёбер (между выбранными вершинами), то мы получим подграф исходного графа.

Идея подграфов используется во многих алгоритмах, например, сначала создаётся подграф их всех вершин без рёбер, а потом дополняется выбранными рёбрами.

Полный граф — это граф, в котором каждые две вершины соединены одним ребром.

Сколько рёбер в полном графе? Это известная задача о рукопожатиях: собралось N человек (вершин) и каждый с каждым обменялся рукопожатием (ребро), сколько всего было рукопожатий? Вычисляется как сумма чисел от 1 до N — каждый новый участник должен пожать руку всем присутствующим, вычисляется по формуле: N * (N — 1) / 2.

Регулярный граф — граф, в котором степени всех вершин одинаковые.

Двудольный граф — если все вершины графа можно разделить на два множества таким образом, что каждое ребро соединяет вершины из разных множеств, то такой граф называется двудольным. Например, клиент-серверное приложение содержит множество запросов (рёбер) между клиентом и сервером, но нет запросов внутри клиента или внутри сервера.

Планарный граф. Если граф можно разместить на плоскости таким образом, чтобы рёбра не пересекались, то он называется “планарным графом” или “плоским графом”.

Если это невозможно сделать, то граф называется “непланарным”.

Минимальные непланарные графы — это полный граф К5 из 5 вершин и полный двудольный граф К3,3 из 3+3 вершин (известная задача о 3 соседях и 3 колодцах). Если какой-либо граф в качестве подграфа содержит К5 или К3,3, то он является непланарным.

Читайте также:  Дерево тату значение круг

Путь или Маршрут — это последовательность смежных рёбер. Обычно путь задаётся перечислением вершин, по которым он пролегает.

Длина пути — количество рёбер в пути.

Цепь — маршрут без повторяющихся рёбер.

Простая цепь — цепь без повторяющихся вершин.

Цикл или Контур — цепь, в котором последняя вершина совпадает с первой.

Длина цикла — количество рёбер в цикле.

Самый короткий цикл — это петля.

Цикл Эйлера — цикл, проходящий по каждому ребру ровно один раз. Эйлер доказал, что такой цикл существует тогда, и только тогда, когда все вершины в связанном графе имеют чётную степень.

Цикл Гамильтона — цикл, проходящий через все вершины графа по одному разу. Другими словами — это простой цикл, в который входят все вершины графа.

Взвешенный граф — граф, в котором у каждого ребра и/или каждой вершины есть “вес” — некоторое число, которое может обозначать длину пути, его стоимость и т. п. Для взвешенного графа составляются различные алгоритмы оптимизации, например поиск кратчайшего пути.

Пока ещё не придуман алгоритм, который за полиномиальное время нашёл бы кратчайший цикл Гамильтона в полном нагруженном графе, однако есть несколько приближённых алгоритмов, которые за приемлимое время находят если не кратчайший, то очень короткий цикл, эти алгоритмы мы также рассматриваем на курсе Отуса — “Алгоритмы и структуры данных”.

Связный граф — граф, в котором существует путь между любыми двумия вершинами.

Дерево — связный граф без циклов.

Между любыми двумя вершинами дерева существует единственный путь.

Деревья часто используются для организации иерархической структуры данных, например, при создании двоичных деревьев поиска или кучи, в этом случае одну вершину дерева называют корнем.

Лес — граф, в котором несколько деревьев.

Ориентированный граф или Орграф — граф, в котором рёбра имеют направления.

Дуга — направленные рёбра в ориентированном графе.

Полустепень захода вершины — количество дуг, заходящих в эту вершину.

Исток — вершина с нулевой полустепенью захода.

Полустепень исхода вершины — количество дуг, исходящих из этой вершины

Сток — вершина с нулевой полустепенью исхода.

Компонента связности — множество таких вершин графа, что между любыми двумя вершинами существует маршрут.

Компонента сильной связности — максимальное множество вершин орграфа, между любыми двумя вершинами которого существует путь по дугам.

Компонента слабой связности — максимальное множество вершин орграфа, между любыми двумя вершинами которого существует путь по дугам без учёта направления (по дугам можно двигаться в любом направлении).

Мост — ребро, при удалении которого, количество связанных компонент графа увеличивается.

Это только основные термины и определения теории графов, которые мы рассматриваем на первом вебинаре модуля “Теория графов”. Цель статьи — дать наглядное и понятное представление об этих терминах, для чего и были нарисованы эти картинки.

Источник

Оцените статью