Механизм работы устьица растениям

8. Физиология устьичных движений . Значение устьиц в регулировании транспирации.

Устьица – это специфические образования, находящиеся в эпидермисе листа и предназначенные для газообмена листа с окружающей средой. Устьице состоит из 2 замыкающих клеток, между которыми находится устьичная щель. Замыкающие клетки, в отличие от всех остальных клеток эпидермиса, содержат хлоропласты.

Устьица способны к 2 типам движений: фотоактивному, которое индуцируется светом, и гидроактивному, которое индуцируется содержанием влаги в растении.

1. Фотоактивное движение устьиц

Обычно устьица открываются днем, когда идет фотосинтез и растению необходимо поглощать СО2, и закрываются ночью, чтобы растение не теряло лишнюю влагу.

2. Гидроактивное движение устьиц

Устьица во влажных условиях открываются, а при недостатке воды – закрываются

9. Транспирационный коэффициент и коэффициент водопотребления. Методы определения и величина у основных с/х культур.

●Транспирационный коэфф. – величина обратная продуктивной транспирации (кол-во созданного сух. в-ва на 1 л транспирир-ой воды). Он показывает, сколько воды растение затрачивает на построение единицы массы сухого в-ва. Варьирует от 100 до 500. У с/х культур значения близки, отличаются просовидные злаки (сорго, просо) – у них низкий.

Чем выше температура воздуха и ниже относительная его влажность, тем больше транспирационный коэффициент. Чем сильнее ветер, тем он больше. При сильном освещении – выше.

Определить трудно: листья в течение вегетации могут отмирать, учёт накопления массы корней еще более проблематичен. Определяют в вегетационных опытах: строгий учет кол-ва поливной воды и предотвращение испарения с корнеобитаемой среды.

●Коэффициент водопотребления (эвапотранспирационный) – отношение эвапотранспирации (суммарного расхода воды за вегетацию 1 га (исп. с почвы + транспирация)) к созданной биомассе/хозяйственно полезному урожаю. Для картофеля и пшеницы он в среднем около 300.

Можно рассчитать как разность в содержании влаги в метровом слое почвы в начале и конце вегетации плюс осадки и полив.

В засуху он выше (расход влаги больше, но продуктивность часто низкая). Увеличивается с повышением температуры. Чем более плодородна почва, тем ниже коэфф. водопотр. Коэфф. снижается при создании наиболее благоприятных условий.

11. Физиологические основы орошения с/х культур.

При избыточном орошении – ухудшение снабжение корней кислородом, уплотнение и засоление почва. При недостаточном – задержка роста листьев, снижение фотосинтеза.

Оптимальной является влажность почвы 70-80%.

Необходимо вычислять оросительную норму – кол-во воды, необходимое для полива определенной культуры за весь период вегетации в расчете на 1 га.

Читайте также:  Растение кустарниковая лапчатка кустарниковая

Для установления сроков орошения необходимо провести полив, когда растение ещё не испытывает недостатка в воде, но уже успело израсходовать почти всю воду с предыдущего полива.

Период наиб. чувствительности к недостатку влаги – критический период. Для установления времени полива определяют влажность почвы. Хороший показатель водоснабжения – движения устьиц: сразу после полива широко открыты, по мере исчерпания влаги закрываются. Также показателем является концентрация клеточного сока, которая возрастает при недостатке влаги.

Удобрение снижает количество необходимой растению воды, т. е. при оптимизации мин. питания оросительная норма ниже.

Источник

Механизм работы устьица растениям

Строение устьиц растений. Механизм работы устьиц растений.

Устьица — это отверстия в эпидермисе, через которые происходит газообмен. Они находятся в основном на листьях, но имеются также и на стеблях. Каждое устьице окружено двумя замыкающими клетками, которые в отличие от обычных эпидермальных клеток содержат хлоропла-сты. Замыкающие клетки контролируют величину отверстия устьица за счет изменения своей тургесцентности. Внешний вид устьиц и замыкающих клеток хорошо видны на микрофотографиях, полученных с помощью сканирующего электронного микроскопа.

В статье мы уже говорили, как выглядят клетки эпидермиса, замыкающие клетки и устьица, если их рассматривать сверху в световом микроскопе. На рисунке приведено схематическое изображение устьица в разрезе. Видно, что стенки замыкающих клеток неравномерно утолщены: стенка, которая ближе к отверстию устьица, называемая вентральной, толще, чем противоположная, называемая дорсальной. Кроме того, целлюлозные микрофибриллы в стенке ориентированы таким образом, что вентральная стенка менее эластична, чем дорсальная. Некоторые микрофибриллы образуют как бы обручи вокруг замыкающих клеток, похожих на сардельки.

Эти обручи не эластичны, и по мере заполнения клетки водой,т. е. роста ее тургора, они не дают увеличиваться ее диаметру, позволяя растягиваться только в длину. Но поскольку замыкающие клетки соединены своими концами, а тонкие дорсальные стенки растягиваются легче, чем толстые вентральные, клетки приобретают полукруглую форму. В результате между двумя соседними замыкающими клетками появляется зазор, называемый устьичной щелью. Такой же эффект наблюдается, если надувать два скрепленных концами продолговатых воздушных шарика, наклеив вдоль их соприкасающихся сторон липкую ленту (имитация нерастяжимой вентральной стенки). Для полноты картины можно неплотно обмотать их такой же лентой по спирали, имитировав целлюлозные обручи.

Механизм работы устьиц растений

Когда замыкающие клетки теряют воду и тургор, устьичная щель закрывается. Каким образом происходит изменение тургесцентности клеток, пока не ясно.

Согласно классической, так называемой «сахаро-крахмальной» гипотезе, в светлое время суток в замыкающих клетках повышается концентрация водорастворимых Сахаров, а следовательно, осмотический потенциал их становится более отрицательным, что стимулирует поступление в них воды путем осмоса. Однако никому еще не удалось показать, что в замыкающих клетках накапливается достаточное количество сахара, чтобы вызвать наблюдаемые изменения осмотического потенциала.

Читайте также:  Семя растения хромосомный набор

Недавно было установлено, что днем на свету в замыкающих клетках интенсивно накапливаются катионы калия и сопутствующие им анионы: они и играют роль, отводившуюся раньше сахару. До сих пор неясно, уравновешиваются ли при этом их заряды. У некоторых изученных растений отмечалось накопление на свету большого количества анионов органических кислот, в частности малата. Вместе с тем размеры крахмальных зерен, появляющихся в темноте в хлоропластах замыкающих клеток, уменьшаются. Дело в том, что крахмал на свету (необходимы синие лучи спектра) превращается в малат, возможно, по следующей схеме:

Механизм работы устьиц растений

У некоторых видов, например у лука, крахмала в замыкающих клетках нет. Поэтому при раскрытых устьицах малат не накапливается, а катионы, по-видимому, поглощаются вместе с неорганическими ионами типа хлорид-ионов.

В темноте калий (К+) выходит из замыкающих клеток в окружающие эпидермальные клетки. В результате водный потенциал замыкающих клеток растет, и вода из них устремляется туда, где он ниже. Тургор замыкающих клеток падает, они изменяют форму, и устьичная щель закрывается.

Некоторые вопросы пока остаются без ответа. Например, почему на ceeiy в замыкающие клетки поступает калий? Какова роль хлоропластов, кроме накопления крахмала? Возможно, калий поступает внутрь благодаря «включению» АТФ-азы, локализованной в плазмалемме. Судя по некоторым данным, этот фермент активируется синим светом. Возможно, АТФаза нужна для откачивания из клетки протонов (Н+), а катионы калия движутся в клетку для уравновешивания заряда (аналогичный, обсуждаемый в разд. 13.8.4 насос работает во флоэме). Действительно, как и предполагает эта гипотеза, внутри замыкающих клеток рН на свету падает. В 1979 г. было показано, что в хлоропластах замыкающих клеток конских бобов (Vtcia faba) нет ферментов цикла Кальвина, а тилакоидная система развита слабо, хотя хлорофилл там имеется. Следовательно, обычный Сз-фотосинтез не работает, крахмала таким путем не образуется. Это, вероятно, объясняет, почему крахмал образуется не днем, как в обычных фотосинтезирующих клетках, а ночью.

— Вернуться в оглавление раздела «Биология.»

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Источник

11.Устьица: строение, расположение, значение, механизм устьичных

Устьица выполняют две основные функции: осуществляют газообмен и транспирацию (испарение).

Устьице состоит из двух замыкающих клеток и устьичной щели между ними. К замыкающим примыкают побочные (околоустьичные) клетки. Под устьицем расположена воздушная полость. Устьица способны автоматически закрываться или открываться по мере необходимости. Это обусловлено тургорными явлениями.

Степень раскрытия устьиц зависит от интенсивности света, кол-ва воды в листе и угл.газа. в межклетниках, t воздуха и др.факторов. В зависимости от фактора, запускающего двигательный механизм (свет или начинающийся водный дефицит в тканях листа), различают фото- и гидроактивное движение устьиц. Существует также гидропаесивное движение, вызванное изменением оводненности клеток эпидермиса и не затрагивающее метаболизм замыкающих клеток. Например, глубокий водный дефицит может вызвать подвядание листа, эпидермальные клетки при этом, уменьшаясь в размерах, растягивают замыкающие клетки, и устьица открываются. Или, наоборот, сразу после дождя эпидермальные клетки настолько разбухают

Читайте также:  Защита растений от вредных болезней

от воды, что сдавливают замыкающие клетки, и устьица закрываются.

Гидропассивная р-ция — закрывание устьичных щелей, когда паренхимы клетки переполнены водой и механ.сдавливают замык.клетки

Гидроактивная открывания и закрывания — движения, вызванные изменением в содержании воды в замыкающих клетках устьиц.

Фотоактивная — проявл.в открытии устьиц на свету и закрывании в темноте.

13. Влияние внешних факторов на транспирацию

Транспирация — потеря влаги в виде испарения воды с поверхности листьев или других частей растения, осуществляется с помощью устьиц. При недостатке воды в почве интенсивность транспирации снижается.

Низкие температуры инактивируют ферменты, затрудняя поглощение воды и замедляя транспирацию. Высокие температуры способствуют перегреву листьев, усиливая транспирацию. С увеличением температуры интенсивность транспирации увеличивается. Температура — источник энергии для испарения воды. Охлаждающий эффект транспирации особенно значителен при высокой температуре, низкой влажности воздуха и хорошем водоснабжении. Кроме того, температура выполняет еще и регуляторную функцию, влияя на степень открытости устьиц.

Свет. На свету температура листа повышается и транспирация усиливается, а физиологическое действие света – это его влияние на движение устьиц – на свету растения траспирируют сильнее, чем в темноте. Влияние света на транспирацию связано, прежде всего, с тем, что зеленые клетки поглощают не только инфракрасные солнечные лучи, но и видимый свет, необходимый для фотосинтеза. В полной темноте устьица сначала полностью закрываются, а потом немного приоткрываются.

Ветер повышает транспирации из-за уноса паров воды, создавая их дефицит у поверхности листьев. Скорость ветра не так сильно влияет на транспирацию, как на испарение со свободной водной поверхности. Вначале при появлении ветра и увеличении его скорости транспирация возрастает, но дальнейшее усиление ветра почти не влияет на этот процесс.

Влажность воздуха. При избыточной влажности транспирация снижается (в теплицах), в сухом воздухе – повышается, чем меньше относительная влажность воздуха, тем ниже его водный потенциал и тем быстрее идет транспирация.при недостатке воды в листе включаются устьичная и внеустьичная регуляция, поэтому интенсивность транспирации увеличивается медленнее испарения воды с водной поверхности. При возникновении сильного водного дефицита транспирация может почти прекратиться, несмотря на увеличивающуюся сухость воздуха. С увеличением влажности воздуха транспирация уменьшается; при большой влажности воздуха происходит только гуттация.

Высокая влажность воздуха препятствует нормальному ходу транспирации, следовательно, отрицательно влияет на восходящий транспорт веществ по сосудам, регуляцию температуры растения, устьичные движения.

Водный дефицит – нехватка воды растениям.

Источник

Оцените статью