Метод дерева решений практика

Дерево решений

Для построения дерева решений не существует универсального набора символов, но чаще всего квадраты (□) используются для представления «решений», а круги (○) для представления «результатов». Поэтому я буду использовать в своей статье именно эти символы.

Дерево решений и задача, требующая многошагового принятия решений

Дерево решений – это представление задачи в виде диаграммы, отражающей варианты действий, которые могут быть предприняты в каждой конкретной ситуации, а также возможные исходы (результаты) каждого действия. Такой подход особенно полезен, когда необходимо принять ряд последовательных решений и (или) когда на каждом этапе процесса принятия решения могут возникать множественные исходы.
Например, если рассматривается вопрос, стоит ли расширять бизнес, решение может зависеть более чем от одной переменной.

Например, может существовать неопределенность как в отношении объема продаж, так и величины затрат. Более того, значение некоторых переменных может зависеть от значения других переменных: например, если будет продано 100,000 единиц продукта, себестоимость единицы продукта составит $4, но если будет продано 120,000 единиц, себестоимость единицы снизится до $3.80. Таким образом, возможны различные исходы ситуации, при этом некоторые из них будут зависеть от предыдущих исходов. Дерево решений представляет собой полезный метод разделения сложной задачи на более мелкие и более управляемые подзадачи.

Решение задачи при помощи дерева решений осуществляется в два этапа. Первый этап включает построение дерева решений с указанием всех возможных исходов (финансовых результатов) и их вероятностей. Следует помнить, что при принятии решений нужно опираться на принцип релевантных затрат, т. е. использовать только релевантные затраты и выручку. Второй этап включает оценку и формулировку рекомендаций. Принятие решения осуществляется путем последовательного расчета ожидаемых значений исходов в обратном порядке  от конца к началу (справа налево). После этого формируются рекомендации для руководства по выбору оптимального образа действий.

Построение дерева решений

Дерево решений всегда следует строить слева направо. Выше я упоминал «решения» и «исходы». Точки принятия решений представляют собой варианты альтернативных действий, то есть возможные выборы. Вы принимаете решение пойти либо этим, либо другим путем. Исходы (результаты решений) от вас не зависят. Они зависят от внешней среды, например, от клиентов, поставщиков или состояния экономики в целом. Как из точек принятия решений, так и из точек исходов выходят «ветви» дерева. Если существует, например, два возможный варианта действий, из точки принятия решения будут выходить две ветви, и если существует два возможных исхода (например, хороший и плохой), то из точки исхода тоже будут выходить две ветви. Поскольку дерево решений является инструментом оценки различных вариантов действий, то все деревья решений должны начинаться с точки принятия решения, которая графически представляется квадратом.

Пример простого дерева решений показан ниже. Из рисунка видно, что лицо, принимающее решение, может выбрать из двух вариантов, поскольку из точки

Читайте также:  Мучнистая роса плодовых деревьев

принятия решения выходит две ветви. Исход одного из вариантов действий, представленного верхней ветвью, точно известен, поскольку на этой ветви нет никаких точек возможных исходов. Но на нижней ветви есть круг, который показывает, что в результате данного решения возможны два исхода, поэтому из него исходят две ветви. На каждой из этих двух ветвей тоже имеется по кругу, из которых, в свою очередь, тоже выходят по две ветви. Это значит, что для каждого из упомянутых возможных исходов имеется два варианта развития ситуации, и каждый из вариантов имеет свой исход. Возможно, первые два исхода представляют собой различные уровни дохода в случае осуществления определенной инвестиции, а второй ряд исходов — различные варианты переменных затрат для каждого уровня доходов.

PM DT1

После построения основы дерева, как показано выше, необходимо указать финансовые значения исходов и их вероятности. Важно помнить, что вероятности, указанные для ветвей, исходящих из одной точки, в сумме должны давать 100%, иначе это будет означать, что вы не указали на диаграмме какой-либо результат, или допустили ошибку в расчетах. Пример приведен ниже в статье.

После построение дерева решений необходимо оценить решение.

Оценка решения

Дерево решений оценивается справа налево, т. е. в направлении, обратном тому, которое использовалось для построения дерева решений. Для того, чтобы осуществить оценку, вы должны предпринять следующие шаги:

  1. Подпишите все точки принятия решений и исходов, т.е. все квадраты и круги. Начните с тех, которые расположены в самой правой части диаграммы, сверху вниз, и затем перемещайтесь влево до самого левого края диаграммы.
  2. Последовательно рассчитайте ожидаемые значения всех исходов, двигаясь справа налево, используя финансовые показатели исходов и их вероятности.

Наконец, выберите вариант, который обеспечивает максимальное ожидаемое значение исхода и подготовьте рекомендации для руководства.

Важно помнить, что использование ожидаемых значений для принятия решения имеет свои недостатки. Ожидаемое значение – это средневзвешенное значение исходов решения в долгосрочной перспективе, если бы это решение принималось много раз.
Таким образом, если мы принимаем однократное решение, то фактический результат

быть далек от ожидаемого значения, поэтому данный метод нельзя назвать очень точным. Кроме того, рассчитать точные вероятности довольно сложно, поскольку конкретная рассматриваемая ситуация могла никогда не случаться в прошлом.

Метод ожидаемого значения при принятии решений полезен тогда, когда инвестор имеет нейтральное отношение к риску. Такой инвестор не принимает на себя чрезмерные риски, но и не избегает их. Если отношение к риску лица, принимающего решение, неизвестно, то сложно сказать, стоит ли использовать метод ожидаемого значения. Может оказаться более полезным просто рассмотреть наихудший и наилучший сценарии, чтобы создать основу для принятия решения.

Я приведу простой пример использования дерева решений. В целях упрощения считайте, что все цифры являются чистой приведенной стоимостью соответствующего показателя.

Читайте также:  Дерева осенью опали листья

Пример 1
Компания принимает решение, стоит ли разрабатывать и запускать новый продукт. Ожидается, что затраты на разработку составят $400,000, при этом вероятность того, продукт окажется успешным, составляет 70%, а вероятность неудачи, соответственно, 30%. Ниже приведена оценка прибыли от продажи продукта, в зависимости от уровня спроса – высокого, среднего или низкого, а также соответствующие каждому уровню вероятности:

Источник

Дерево решений

Своевременная разработка и принятие правильного решения — главные задачи работы управленческого персонала любой организации. Непродуманное решение может дорого стоить компании. На практике результат одного решения заставляет нас принимать следующее решение и т. д. Когда нужно принять несколько решений в условиях неопределенности, когда каждое решение зависит от исхода предыдущего или исходов испытаний, то применяют схему, называемую деревом решений.

  • Дерево решений — это графическое изображение процесса принятия решений, в котором отражены альтернативные решения, альтернативные состояния среды, соответствующие вероятности и выигрыши для любых комбинаций альтернатив и состояний среды.

Рисуют деревья слева направо. Места, где принимаются решения, обозначают квадратами Дерево решений, места появления исходов — кругами Дерево решенийвозможные решения — пунктирными линиями Дерево решений, возможные исходы — сплошными линиями Дерево решений

Для каждой альтернативы мы считаем ожидаемую стоимостную оценку (EMV) — максимальную из сумм оценок выигрышей, умноженных на вероятность реализации выигрышей, для всех возможных вариантов.

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Примеры с решением

Пример 1.

Главному инженеру компании надо решить, монтировать или нет новую производственную линию, использующую новейшую технологию. Если новая линия будет работать безотказно, компания получит прибыль 200 млн. рублей. Если же она откажет, компания может потерять 150 млн. рублей. По оценкам главного инженера, существует 60% шансов, что новая производственная линия откажет. Можно создать экспериментальную установку, а затем уже решать, монтировать или нет производственную линию.

Эксперимент обойдется в 10 млн. рублей. Главный инженер считает, что существует 50% шансов, что экспериментальная установка будет работать. Если экспериментальная установка будет работать, то 90% шансов за то, что смонтированная производственная линия также будет работать. Если же экспериментальная установка не будет работать, то только 20% шансов за то, что производственная линия заработает. Следует ли строить экспериментальную установку? Следует ли монтировать производственную линию? Какова ожидаемая стоимостная оценка наилучшего решения?

Дерево решений

В узле F возможны исходы «линия работает» с вероятностью 0,4 (что приносит прибыль 200) и «линия не работает» с вероятностью 0.6 (что приносит убыток —150) => оценка узла F: EMV(F) = 0,4х200 4- 0,6х(-150) = -10. Это число мы пишем над узлом F.

Возможно вам будут полезны данные страницы:

В узле 4 мы выбираем между решением «монтируем линию» (оценка этого решения EMV(F) = —10) и решением ♦ не монтируем линию» (оценка этого решения Дерево решений Дерево решений Дерево решенийЭту оценку мы пишем над узлом 4, а решением «монтируем линию» отбрасываем и зачеркиваем.

Читайте также:  Декор в виде дерева

Дерево решений

Дерево решений. Поэтому в узле 2 отбрасываем возможное решение «не монтируем линию». Дерево решений

Дерево решений

Поэтому в узле 3 отбрасываем возможное решение «монтируем линию».

EMV(A) « 0,5×165 4- 0,5×0 — 10 = 72,5.

EMV(l) = max = max = 72,5 = = EMV(A). Поэтому в узле 1 отбрасываем возможное решение «не строим установку».

Ожидаемая стоимостная оценка наилучшего решения равна 72,5 млн. рублей. Строим установку. Если установка работает, то монтируем линию. Если установка не работает, то линию монтировать не надо.

Задача 2.

Предприниматель провел анализ, связанный с открытием магазина. Если он откроет большой магазин, то при благоприятном состоянии рынка получит прибыль 60 млн. рублей, при неблагоприятном — понесет убытки 40 млн. рублей. Маленький магазин принесет ему 30 млн. рублей прибыли при благоприятном состоянии рынка и 10 млн. рублей убытков при неблагоприятном. Возможность благоприятного и неблагоприятного состояния рынка он оценивает одинаково. Исследование рынка, которое может провести специалист, обойдется предпринимателю в 5 млн. рублей. Специалист считает, что с вероятностью 0,6 состояние рынка окажется благоприятным. В то же время при положительном заключении состояние рынка окажется благоприятным лишь с вероятностью 0,9. При отрицательном заключении с вероятностью 0,12 состояние рынка может оказаться благоприятным. Используйте дерево решений для того, чтобы помочь предпринимателю принять решение. Следует ли заказать проведение обследования состояния рынка? Следует ли открыть большой магазин? Какова ожидаемая стоимостная оценка наилучшего решения?

Пример 3.

Компания рассматривает вопрос о строительстве завода. Возможны три варианта действий.

А. Построить большой завод стоимостью Дерево решений= 700 тысяч долларов. При этом варианте возможны большой спрос (годовой доход в размере Дерево решений= 280 тысяч долларов в течение следующих 5 лет) с вероятностью Дерево решений= 0,8 и низкий спрос (ежегодные убытки Дерево решений= 80 тысяч долларов) с вероятностью Дерево решений= 0,2.

Б. Построить маленький завод стоимостью Дерево решений= 300 тысяч долларов. При этом варианте возможны большой спрос (годовой доход в размере Дерево решений= 180 тысяч долларов в течение следующих 5 лет) с вероятностью Дерево решений= 0,8 и низкий спрос (ежегодные убытки Дерево решений= $5 тысяч долларов) с вероятностью Дерево решений= 0,2.

В. Отложить строительство завода на один год для сбора дополнительной информации, которая может быть позитивной или негативной с вероятностью Дерево решений= 0,7 и Дерево решений= 0,3 соответственно. В случае позитивной информации можно построить заводы по указанным выше расценкам, а вероятности большого и низкого спроса меняются на Дерево решений= 0,9 и Дерево решений= 0,1 соответственно. Доходы на последующие четыре года остаются прежними. В случае негативной информации компания заводы строить не будет.

Все расчеты выражены в текущих ценах и не должны дисконтироваться. Нарисовав дерево решений, определим наиболее эффективную последовательность действий, основываясь на ожидаемых доходах.

Дерево решенийОжидаемая стоимостная оценка узла Дерево решений

Дерево решений

Дерево решений

.

Поэтому в узле 2 отбрасываем возможное решение «большой завод».

Дерево решений

Дерево решений

Поэтому в узле 1 выбираем решение «маленький завод». Исследование проводить не нужно. Строим маленький завод. Ожидаемая стоимостная оценка этого наилучшего решения равна 365 тысяч долларов.

Дерево решений

Дерево решений

Источник

Оцените статью