Метод деревьев решений анализ чувствительности деревьев решений

8.10. Метод «дерево решений»

Для анализа рисков инновационных проектов часто применяют метод дерева решений. Он предполагает, что у проекта существует несколько вариантов развития. Каждое решение, принимаемое по проекту, определяет один из сценариев его дальнейшего развития. При помощи дерева решений решаются задачи классификации и прогнозирования. Дерево решений – это схематическое представление проблемы принятия решений. Ветви дерева решений представляют собой различные события (решения), а его вершины – ключевые состояния, в которых возникает необходимость выбора. Чаще всего дерево решений является нисходящим, т. е. строится сверху вниз. Выделяют следующие этапы построения дерева решений:

  1. Первоначально обозначают ключевую проблему. Это будет вершина дерева.
  2. Для каждого момента определяют все возможные варианты дальнейших событий, которые могут оказать влияние на ключевую проблему. Это будут исходящие от вершины дуги дерева.
  3. Обозначают время наступления событий.
  4. Каждой дуге прописывают денежную и вероятностную характеристики.
  5. Проводят анализ полученных результатов.

Основа наиболее простой структуры дерева решений – ответы на вопросы «да» и «нет». Пример 1. Рассмотрим пример дерева решений, задача которого – ответить на вопрос «Пойти ли гулять?». Чтобы решить эту задачу, необходимо ответить на ряд вопросов, которые находятся в узлах дерева (рис. 8.1). Вершина дерева «На улице солнечно» является узлом проверки. Если на этот вопрос получен положительный ответ, то переходим к левой ветви дерева, если отрицательный – то к правой. Движение продолжается до тех пор, пока не будет получен окончательный ответ. Рис. 8.1. Дерево решений «пойти ли гулять» Для каждой дуги дерева могут быть определены числовые характеристики, например величина прибыли по проекту и вероятность ее получения. В этом случае оно помогает учесть все возможные варианты действия и соотнести с ними финансовые результаты. Для формулирования сценариев развития проекта необходимо располагать достоверной информацией с учетом вероятности и времени наступления событий. Затем переходят к сравнению альтернатив. Пример 2. Компания «Конфетти» в настоящее время выпускает плитки молочного шоколада. Директор по развитию считает, что на рынке повысился спрос на молочный шоколад с наполнителями. Перед компанией стоит вопрос: переходить ли на производство молочного шоколада с наполнителем или не стоит этого делать? Если производить шоколад обоих типов, то потребуется увеличить производственные мощности. Информация об ожидаемых выигрышах и вероятности событий в случае того или иного решения представлена на дереве решений (рис. 8.2). Используя дерево решений, руководитель находит наиболее предпочтительное решение – увеличить производственные мощности. Это обусловлено ожидаемой прибылью – 2 млн руб., которая превышает прибыль 1 млн руб. при отказе от такого наращивания, если в точке «а» будет низкий спрос. Руководитель, двигаясь к первой точке принятия решения, рассчитывает предполагаемую прибыль в случае альтернативных действий. Рис. 8.2. Дерево решений «какой шоколад производить» Для производства только молочного шоколада с наполнителем она составит 4,4 млн руб. (5 × 0,8 + 0,2 × 2). Аналогично рассчитывается ожидаемое значение для варианта выпуска только молочного шоколада без наполнителя, которое равно всего 2,55. Таким образом, наращивание производственных мощностей является наиболее желательным решением и приносит наибольший выигрыш. Пример 3. Руководителю отдела нужно принять решение относительно закупки станков. Второй станок более экономичный, но и в то же время более дорогой и требует больших накладных расходов (рис. 8.3). Руководителю нужно выбрать тот станок, который обеспечит максимизацию прибыли.

Читайте также:  Чем уничтожить маленькое дерево
Оборудование Постоянные расходы Операционный расход на единицу техники
Станок 1 500 000 670
Станок 2 700 000 940

Рис. 8.3. Дерево решений Руководитель оценивает вероятность спроса на продукцию, производимую на станках:

  • 2 000 ед. с вероятностью 0,4;
  • 3 000 ед. с вероятностью 0,6.

Станок 1: 840 000 × 0,4 + 1 510 000 × 0,6 = 1 242 000. Станок 2: 1 180 000 × 0,4 + 2 120 000 × 0,6 = 1 744 000. Таким образом, приобретение второго станка более экономично. Недостатками дерева решений является ограниченное число вариантов решения проблемы. В процессе построения дерева решений необходимо обращать внимание на его размер. Оно не должно быть слишком перегруженным, т. к. это уменьшает способность к обобщению и способность давать верные ответы.

Источник

Теоретическая часть

К задачам принятия решений в условиях риска, относятся задачи, в которых исходные данные можно описать с помощью вероятностных распределений. В подобных моделях термин риск имеет смысл наличия нескольких исходов, одни из которых рассматриваются более предпочтительным другим.

Если решение принимается в условиях риска, то стоимости альтернатив описываются вероятностными распределениями, т.е. прибыль (затраты), связанная с каждым альтернативным решением, является случайной величиной (вернут или вернут кредит: в одном случае мы получим прибыль, в другом — убытки). Поэтому в качестве критерия принятия решения в случае случайного события используется ожидаемое значение стоимости — математическое ожидание М. Все альтернативы сравниваются с точки зрения максимизации ожидаемой прибыли или минимизации ожидаемых затрат.

Решение простого дерева

Рассмотрим процесс решения задачи в условиях риска на примере.

Для финансирования проекта Предприятию нужно занять сроком на один год 15 млн. руб. Для этого начальник финансово-экономического отдела обращается в Банк. Банк может дать кредит Предприятию под 15% годовых или вложить те же деньги в другое дело со 100%-ным возвратом суммы, но под 9% годовых. После анализа статистики прошлого опыта кредитования, кредитный специалист Банка определил, что 4% аналогичных клиентов кредит не возвращают.

Читайте также:  Чем покрасить вагонку чтобы сохранить цвет дерева

Как должен поступить кредитный специалист Банка в сложившейся ситуации: кредитовать Предприятие или вложить средства в другое дело?

Построение дерева решений

Одним из методов решения задачи в условиях риска является использование деревьев решений. Деревья решений содержат в себе информацию о ходе принятия решений ЛПР и о случайных событиях, происходящих после принятия решений. Дерево, соответствующее представленной задаче, будет выглядеть так, как отображает Рисунок 37.

Рисунок 37. Пример 1 — дерево решений

На схеме дерева решений используются следующие обозначения узлов:

  1. Узел дерева в форме квадрата () — принятие решения ЛПРом. Потомками узла принятия решения на дереве являются альтернативы;
  2. Узел дерева в форме окружности () — это случайные события. Потомками случайных событий являются возможные исходы случайного события;
  3. Узел дерева в форме ромба () — терминальный узел дерева, возможный конечный исход ситуации принятия решения. Данный узел не имеет потомков.

Численные значения конечных исходов просчитываются, начиная с терминальных узлов дерева по направлению к основному узлу так, как показано далее:

Результат А1 = 15000000 + 0,15 * 15000000 = 17250000Результат A0 = 0Результат Б1 = 15000000 + 0,09 * 15000000 = 16350000

Чистый доход, получаемый в случае выбора альтернативы А:

Mдавать_заем= (17250000 * 0,96 + 0 * 0,04) — 15000000 = 16560000 — 15000000 = 1560000

Выбор альтернативы Бдает:

Mне_давать_заем= (16350000 * 1,0 – 15000000) = 1350000

Поскольку ожидаемый чистый доход больше для альтернативы А, то требуется принять решение — выдать заем.

Анализ чувствительности решения

Решения, принимаемые в условиях риска, очевидно, зависят от значений вероятностей исходов. Чувствительность решения от вероятностей определяется величиной допустимого изменения вероятностей исходов событий, с которыми связано принимаемое решение. Знать, насколько решение чувствительно необходимо, чтобы понимать насколько можно полагаться на производимый выбор. Проанализируем чувствительность в только что рассмотренном примере. Ожидаемые чистые доходы в узлах АиБдовольно близки:1,56и1,35млн. руб. Выбор решения зависит от значения вероятностей. Анализ чувствительности позволяет вычислить разброс вероятностей, в рамках которых не меняется выбор. Обозначим вероятность невозврата займа через p. Тогда вариантАдает чистый доход:

Читайте также:  Магия деревьев от колдовства
17250000*(1-p) + 0*p – 15000000 = 2250000 – 17250000*p

Вариант Бприносит чистый доход 1350 000 руб. Уравнивание чистого дохода АиБпозволяет определить, при какой вероятностиpрешения будут иметь равную полезность:

2250000 – 17250000*p = 1350000 => p = 900000/17250000 = 0,052

Результат p≈0,05оказался близок кp≈0,04, что показывает сильную чувствительность результата выбора решения к расчетам величины вероятности.

Источник

Оцените статью