Метод кластеризации дерево решений

Как построить дерево решений?

Пусть нам задано некоторое обучающее множество T, содержащее объекты (примеры), каждый из которых характеризуется m атрибутами (атрибутами), причем один из них указывает на принадлежность объекта к определенному классу.

Идею построения деревьев решений из множества T, впервые высказанную Хантом, приведем по Р. Куинлену (R. Quinlan).

Пусть через 1, C2, . Ck> обозначены классы(значения метки класса), тогда существуют 3 ситуации:

  1. множество T содержит один или более примеров, относящихся к одному классу Ck. Тогда дерево решений для Т – это лист, определяющий класс Ck;
  2. множество T не содержит ни одного примера, т.е. пустое множество. Тогда это снова лист, и класс, ассоциированный с листом, выбирается из другого множества отличного от T, скажем, из множества, ассоциированного с родителем;
  3. множество T содержит примеры, относящиеся к разным классам. В этом случае следует разбить множество T на некоторые подмножества. Для этого выбирается один из признаков, имеющий два и более отличных друг от друга значений O1, O2, . On. T разбивается на подмножества T1, T2, . Tn, где каждое подмножество Ti содержит все примеры, имеющие значение Oi для выбранного признака. Это процедура будет рекурсивно продолжаться до тех пор, пока конечное множество не будет состоять из примеров, относящихся к одному и тому же классу.

Вышеописанная процедура лежит в основе многих современных алгоритмов построения деревьев решений, этот метод известен еще под названием разделения и захвата (divide and conquer). Очевидно, что при использовании данной методики, построение дерева решений будет происходит сверху вниз.

Поскольку все объекты были заранее отнесены к известным нам классам, такой процесс построения дерева решений называется обучением с учителем (supervised learning). Процесс обучения также называют индуктивным обучением или индукцией деревьев (tree induction).

На сегодняшний день существует значительное число алгоритмов, реализующих деревья решений CART, C4.5, NewId, ITrule, CHAID, CN2 и т.д. Но наибольшее распространение и популярность получили следующие два:

  • CART (Classification and Regression Tree) – это алгоритм построения бинарного дерева решений – дихотомической классификационной модели. Каждый узел дерева при разбиении имеет только двух потомков. Как видно из названия алгоритма, решает задачи классификации и регрессии.
  • C4.5 – алгоритм построения дерева решений, количество потомков у узла не ограничено. Не умеет работать с непрерывным целевым полем, поэтому решает только задачи классификации.
Читайте также:  Чем полезно каштановое дерево

Большинство из известных алгоритмов являются «жадными алгоритмами». Если один раз был выбран атрибут, и по нему было произведено разбиение на подмножества, то алгоритм не может вернуться назад и выбрать другой атрибут, который дал бы лучшее разбиение. И поэтому на этапе построения нельзя сказать даст ли выбранный атрибут, в конечном итоге, оптимальное разбиение.

Этапы построения деревьев решений

При построении деревьев решений особое внимание уделяется следующим вопросам: выбору критерия атрибута, по которому пойдет разбиение, остановки обучения и отсечения ветвей. Рассмотрим все эти вопросы по порядку.

Источник

1.5. Деревья решений

Вопросы для рассмотрения: Задача классификации в контексте машинного обучения. Деревья решений. Информационная энтропия и прирост информации. Алгоритмы IDЗ и С4.5. Критерии остановки и отсечения. Меры и методы оценки качества обучения (скользящий контроль). Рекомендуемая литература: 1. Перечень дополнительных ресурсов: 5, перечень ресурсов сети Интернет. Наименование вида самостоятельной работы: изучение ли- тературы, подготовка к практическим и лабораторным занятиям, выполнение тестовых заданий. Дерево принятия решений (также может называться деревом классификации или регрессионным деревом) — средство поддержки принятия решений, использующееся в машинном обучении, анализе данных и статистике. Структура дерева представляет собой «листья» и «ветки». На рёбрах («ветках») дерева решения записаны атрибуты, от которых зависит целевая функция, в «листьях» записаны значения целевой функции, а в остальных узлах — атрибуты, по которым различаются случаи. Чтобы классифицировать новый случай, надо спуститься по дереву до листа и выдать соответствующее значение. Подобные деревья решений широко используются в интеллектуальном анализе данных. Цель состоит в том, чтобы создать модель, которая предсказывает значение целевой переменной на основе нескольких переменных на входе. Каждый лист представляет собой значение целевой переменной, изменённой в ходе движения от корня по листу. Каждый внутренний узел соответствует одной из входных переменных. Дерево может быть также «изучено» разделением исходных наборов переменных на подмножества, основанные на тестировании значений атрибутов. Это процесс, который повторяется на каждом из полученных

Читайте также:  Питомник деревьев растений кустарников

подмножеств. Рекурсия завершается тогда, когда подмножество в узле имеет те же значения целевой переменной, таким образом, оно не добавляет ценности для предсказаний. Деревья решений, используемые в Data Mining, бывают двух основных типов: – Дерево для классификации, когда предсказываемый результат является классом, к которому принадлежат данные; – Дерево для регрессии, когда предсказываемый результат можно рассматривать как вещественное число (например, цена на дом, или продолжительность пребывания пациента в больнице). Некоторые методы позволяют построить более одного дерева решений (ансамбли деревьев решений): – Бэггинг над деревьями решений, наиболее ранний подход. Строит несколько деревьев решений, неоднократно интерполируя данные с заменой (бутстреп), и в качестве консенсусного ответа выдаёт результат голосования деревьев (их средний прогноз);[3] – Классификатор « Случайный лес» основан на бэггинге, однако в дополнение к нему случайным образом выбирает подмножество признаков в каждом узле, с целью сделать деревья более независимыми; – Бустинг над деревьями может быть использован для задач как регрессии, так и классификации.[4] Одна из реализаций бустинга над деревьями, алгоритм XGBoost, неоднократно использовался победителями соревнований по анализу данных. – «Вращение леса» — деревья, в которых каждое дерево решений анализируется первым применением метода главных компонент (PCA) на случайные подмножества входных функций. Есть различные способы выбирать очередной атрибут: – Алгоритм ID3, где выбор атрибута происходит на основании прироста информации, либо на основании критерия Джини. – Алгоритм C4.5 (улучшенная версия ID3), где выбор атрибута происходит на основании нормализованного прироста информации (англ. Gain Ratio). – Алгоритм CART и его модификации — IndCART, DB-CART. – Автоматический детектор взаимодействия Хи-квадрат (CHAID). Выполняет многоуровневое разделение при расчёте классификации деревьев;[6] – MARS: расширяет деревья решений для обработки цифровых данных.

Читайте также:  Поделки из дерева старинные

1.6. Задачи кластеризации

Вопросы для рассмотрения: Задача кластеризации. Определение меры расстояния между объектами (Евклидова, Минковского, Махаланобиса). Иерархические агломеративные методы группировки («ближнего соседа», «дальнего соседа», средней связи, центроидный). Метод k-средних. Спектральная кластеризация. Индексы качества кластеризации. Рекомендуемая литература: 1. Перечень дополнительных ресурсов: 4, 5, перечень ресурсов сети Интернет. Наименование вида самостоятельной работы: изучение ли- тературы, подготовка к практическим и лабораторным занятиям, выполнение тестовых заданий. Кластеризация предназначена для разбиения совокупности объектов на однородные группы ( кластеры или классы). Если данные выборки представить как точки в признаковом пространстве, то задача кластеризации сводится к определению «сгущений точек». Цели кластеризации – Понимание данных путём выявления кластерной структуры. Разбиение выборки на группы схожих объектов позволяет упростить дальнейшую обработку данных и принятия решений, применяя к каждому кластеру свой метод анализа (стратегия «разделяй и властвуй»). – Сжатие данных . Если исходная выборка избыточно большая, то можно сократить её, оставив по одному наиболее типичному представителю от каждого кластера. – Обнаружение новизны (novelty detection). Выделяются нетипичные объекты, которые не удаётся присоединить ни к одному из кластеров. Кластеризация является описательной процедурой, она не делает никаких статистических выводов, но дает возможность провести разведочный анализ и изучить «структуру данных». Задача кластеризации сходна с задачей классификации, является ее логическим продолжением, но ее отличие в том, что классы изучаемого набора данных заранее не предопределены. Она относится к широкому классу задач обучения без учителя.

Источник

Оцените статью