Обходы деревьев левый правый

Методы программирования

Задание состоит из трех частей, первая и третья обязательны для выполнения, вторая выполняется по желанию студента. Срок сдачи задания — 17 октября.

Теория

Двоичное дерево задается следующей структурой:

typedef struct _t int data; /* данные в узле */
struct _t *left, *right; /* указатели на левого и правого сыновей */
> t;

t *root; /* корень дерева */

Таким образом, каждый элемент дерева содержит некоторые данные и два указателя на потомков (на левого сына и на правого). Сам узел будем называть отцом этих двух потомков. Определение дерева требует, чтобы у каждого узла, кроме корня, был ровно один отец. Указатель на корень дерева хранится в переменной root , она равна нулю, если дерево пусто.

Левым и правым поддеревьями узла t ( t != 0 ) будем называть деревья (возможно, пустые), корнями которых являются соответственно t->left и t->right .

Основные операции на деревьях: поиск элемента, добавление элемента, удаление элемента. Для поиска элемента в произвольном бинарном дереве необходимо обойти все элементы этого дерева. Существует два основных способа обхода дерева: в глубину и в ширину.

Обход дерева в глубину

Обход в глубину производится рекурсивно либо с использованием стека. В обоих случаях можно обходить узлы дерева в различной последовательности. Обход начинается от корня. Выделяют три наиболее важных порядка обхода в глубину:

  • префиксный (прямой) обход — сначала обрабатывается текущий узел, затем левое и правое поддеревья;
  • инфиксный (симметричный) обход — сначала обрабатывается левое поддерево текущего узла, затем корень, затем правое поддерево;
  • постфиксный (обратный) обход — сначала обрабатываются левое и правое поддеревья текущего узла, затем сам узел.

В качестве примера рассмотрим следующее дерево:

Пример бинарного дерева

  • префиксный обход: A, B, D, H, E, C, F, I, J, G
  • инфиксный обход: D, H, B, E, A, I, F, J, C, G
  • постфиксный обход: H, D, E, B, I, J, F, G, C, A

Запишем в качестве примера рекурсивную процедуру, выводящую на экран узлы дерева в порядке префиксного обхода.

void prefix(t *curr)
if (!curr)
return;
printf(«%d «, curr->data);
prefix(curr->left);
prefix(curr->right);
>

Обход дерева в ширину

Обход в ширину производится с помощью очереди. Первоначально в очередь помещается корень, затем, пока очередь не пуста, выполняются следующие действия:

  • Из очереди выталкивается очередной узел;
  • Этот узел обрабатывается;
  • В очередь добавляются оба сына этого узла.

Узлы дерева на рисунке перечисляются в порядке обхода в ширину следующим образом: A, B, C, D, E, F, G, H, I, J. Заметим, что перечисление узлов происходит в порядке удаления от корня, что делает поиск в ширину удобным, например, для поиска узла дерева со значением k , наиболее близкого к корню, и т.д.

Читайте также:  Тиковое дерево где растет

Приведем пример процедуры, которая выводит на экран узлы дерева в порядке обхода в ширину. Считаем, что определены три функции:

void add(t *elem); /* добавляет в конец очереди элемент elem */
t *del(); /* удаляет из очереди первый элемент и возвращает указатель на него */
int empty(); /* возвращает 1, если очередь пуста, и 0 в противном случае */

Тогда процедура обхода будет иметь следующий вид:

void width(t *root)
if (!root)
return;
add(root);
while (!empty()) t *curr = del();
printf(«%d «, curr->data);
if (curr->left)
add(curr->left);
if (curr->right)
add(curr->right);
>
>

Двоичные деревья поиска

Для поиска узла в таком дереве можно использовать как рекурсивную функцию, так и простой цикл. Ниже приведен пример функции, которая ищет узел со значением k в двоичном дереве поиска с корнем root . Этот код весьма напоминает обычный бинарный поиск:

t *search(t *root, int k)
t *curr = root;
while (curr) if (k == curr->data)
return (curr);
if (k < curr->data)
curr = curr->left;
else
curr = curr->right;
>
return (0);
>

Добавление узла в двоичное дерево поиска напоминает добавление элемента в середину связанного списка: выполняется проход по дереву с запоминанием указателя на узел, предшествующий текущему, и добавление узла к предыдущему, как только текущий указатель станет равным нулю. Необходимо отдельно обработать случай пустого дерева.

Удаление узла из двоичного дерева поиска является менее тривиальной операцией: необходимо поддерживать выполнение условия расположения элементов («слева меньше, справа больше»). Одним из возможных способов является следующий:

  • если у удаляемого узла нет сыновей, его удаление не представляет проблемы (освобождаем память и зануляем указатель на нее у его отца);
  • если у удаляемого узла есть ровно один сын, удаляем узел, а указатель на него у отца заменяем указателем на этого сына;
  • если у удаляемого узла есть оба сына, ищем в правом поддереве узел с минимальным значением (у него по определению будет отсутствовать левый сын) и ставим этот узел на место удаляемого, аккуратно поменяв все необходимые указатели.

Сбалансированные деревья

При работе с двоичными деревьями поиска возможен случай, когда дерево по сути примет вид линейного связанного списка (например, если элементы подавались на вход в порядке возрастания). В таком случае поиск элемента в дереве будет занимать линейное время. Одним из способов предотвращения подобной ситуации является балансировка дерева по мере добавления элементов.

Сбалансированным деревом (AVL-деревом) называется двоичное дерево поиска, удовлетворяющее следующему условию: для любого узла глубина левого поддерева отличается от глубины правого поддерева не более чем на 1. В сбалансированном дереве поиск элемента выполняется за время O(log2N), где N — количество узлов (Адельсон-Вельский, Ландис, 1962). Алгоритм построения сбалансированных деревьев можно найти в сети и в литературе (Вирт, Кнут, . ), поэтому подробное описание его здесь не приводится.

Читайте также:  Качества и свойства дерева

Формулировка задания

а. Реализация простых двоичных деревьев поиска

Во входном файле input.txt в первой строке находится количество записей N , в следующих N строках находятся записи вида имя значение , причем имена могут повторяться. В файл output.txt выдать итоговые значения всех переменных в алфавитном порядке. Хранение записей организовать в виде двоичного дерева поиска.

Примеры

b. ** Реализация сбалансированных деревьев

Задание аналогично предыдущему, но требуется поддерживать дерево сбалансированным. Задание не является обязательным.

c. Реализация префиксного, инфиксного и постфиксного обходов двоичного дерева

Необходимо реализовать функции обхода дерева в порядке префиксного, инфиксного и постфиксного обходов. Дерево задается произвольным образом.

Источник

Обход двоичного дерева на Python

Да, двоичные деревья — не самая любимая тема программистов. Это одна из тех старых концепций, о целесообразности изучения которых постоянно ведутся споры. В работе вам довольно редко придется реализовывать двоичные деревья и обходить их, так зачем же уделять им так много внимания на технических собеседованиях?

Сегодня мы не будем переворачивать двоичное дерево (ффухх!), но рассмотрим пару методов его обхода. К концу статьи вы поймете, что двоичные деревья не так страшны, как кажется.

Что такое двоичное дерево?

Недавно мы разбирали реализацию связных списков на Python. Каждый такой список состоит из некоторого количества узлов, указывающих на другие узлы. А если бы узел мог указывать не на один другой узел, а на большее их число? Вот это и есть деревья. В них каждый родительский узел может иметь несколько узлов-потомков. Если у каждого узла максимум два узла-потомка (левый и правый), такое дерево называется двоичным (бинарным).

В приведенном выше примере «корень» дерева, т. е. самый верхний узел, имеет значение 1. Его потомки — 2 и 3. Узлы 3, 4 и 5 называют «листьями»: у них нет узлов-потомков.

Строим двоичное дерево на Python

Как построить дерево на Python? Реализация будет похожей на наш класс Node в реализации связного списка. В этом случае мы назовем класс TreeNode .

Определим метод __init__() . Как всегда, он принимает self . Также мы передаем в него значение, которое будет храниться в узле.

class TreeNode: def __init__(self, value):

Установим значение узла, а затем определим левый и правый указатель (для начала поставим им значение None ).

class TreeNode: def __init__(self, value): self.value = value self.left = None self.right = None

И… все! Что, думали, что деревья куда сложнее? Если речь идет о двоичном дереве, единственное, что его отличает от связного списка, это то, что вместо next у нас тут есть left и right .

Давайте построим дерево, которое изображено на схеме в начале статьи. Верхний узел имеет значение 1. Далее мы устанавливаем левые и правые узлы, пока не получим желаемое дерево.

tree = TreeNode(1) tree.left = TreeNode(2) tree.right = TreeNode(3) tree.left.left = TreeNode(4) tree.left.right = TreeNode(5)

Обход двоичного дерева

Итак, вы построили дерево и теперь вам, вероятно, любопытно, как же его увидеть. Нет никакой команды, которая позволила бы вывести на экран дерево целиком, тем не менее мы можем обойти его, посетив каждый узел. Но в каком порядке выводить узлы?

Читайте также:  Структура дерево сети является

Самые простые в реализации обходы дерева — прямой (Pre-Order), обратный (Post-Order) и центрированный (In-Order). Вы также можете услышать такие термины, как поиск в ширину и поиск в глубину, но их реализация сложнее, ее мы рассмотрим как-нибудь потом.

Итак, что из себя представляют три варианта обхода, указанные выше? Давайте еще раз посмотрим на наше дерево.

При прямом обходе мы посещаем родительские узлы до посещения узлов-потомков. В случае с нашим деревом мы будем обходить узлы в таком порядке: 1, 2, 4, 5, 3.

Обратный обход двоичного дерева — это когда вы сначала посещаете узлы-потомки, а затем — их родительские узлы. В нашем случае порядок посещения узлов при обратном обходе будет таким: 4, 5, 2, 3, 1.

При центрированном обходе мы посещаем все узлы слева направо. Центрированный обход нашего дерева — это посещение узлов 4, 2, 5, 1, 3.

Давайте напишем методы обхода для нашего двоичного дерева.

Pre-Order

Начнем с определения метода pre_order() . Наш метод принимает один аргумент — корневой узел (расположенный выше всех).

Дальше нам нужно проверить, существует ли этот узел. Вы можете возразить, что лучше бы проверить существование потомков этого узла перед их посещением. Но для этого нам пришлось бы написать два if-предложения, а так мы обойдемся одним.

def pre_order(node): if node: pass

Написать обход просто. Прямой обход — это посещение родительского узла, а затем каждого из его потомков. Мы «посетим» родительский узел, выведя его на экран, а затем «обойдем» детей, вызывая этот метод рекурсивно для каждого узла-потомка.

# Выводит родителя до всех его потомков def pre_order(node): if node: print(node.value) pre_order(node.left) pre_order(node.right)

Просто, правда? Можем протестировать этот код, совершив обход построенного ранее дерева.

Post-Order

Переходим к обратному обходу. Возможно, вы думаете, что для этого нужно написать еще один метод, но на самом деле нам нужно изменить всего одну строчку в предыдущем.

Вместо «посещения» родительского узла и последующего «обхода» детей, мы сначала «обойдем» детей, а затем «посетим» родительский узел. То есть, мы просто передвинем print на последнюю строку! Не забудьте поменять имя метода на post_order() во всех вызовах.

# Выводит потомков, а затем родителя def post_order(node): if node: post_order(node.left) post_order(node.right) print(node.value)

Каждый узел-потомок посещен до посещения его родителя.

In-Order

Наконец, напишем метод центрированного обхода. Как нам обойти левый узел, затем родительский, а затем правый? Опять же, нужно переместить предложение print!

# выводит левого потомка, затем родителя, затем правого потомка def in_order(node): if node: in_order(node.left) print(node.value) in_order(node.right)

Вот и все, мы рассмотрели три простейших способа совершить обход двоичного дерева.

Источник

Оцените статью