Питание азотом высших растении
Высшие растения поглощают соединения азота из почвы. Основным источником азотного питания для растений являются нитраты и аммиак. Однако эти формы не равноценны, каждая из них оказывает свое специфическое влияние на обмен веществ.
Азотный обмен растений
Изучение отдельных этапов превращения азотистых соединений, а также исследования, показавшие широкое распространение процессов реутилизации соединений азота, привели к представлению о круговороте азотистых веществ в растительном организме. Корневые системы растений хорошо усваивают нитраты, которые, поступая в корни растения, подвергаются ферментативному восстановлению до нитритов и далее до аммиака. Этот процесс происходит главным образом в корнях, однако и клетки листьев обладают этой способностью. Восстановление нитратов до аммиака идет через ряд этапов. Нитраты восстанавливаются до нитритов при участии фермента нитратредуктазы (нитратредуктаза — это флавопротеид, содержащий молибден). Образовавшиеся нитриты восстанавливаются до гипонитрита, гидроксиламина, наконец, до аммиака.
Восстановление нитритов до гипонитрита катализируется ферментом нитритредуктазой. Нитритредуктаза активируется медью. Соответственно последующие реакции катализируются ферментами гипонитритредуктазой и гидроксиламинредуктазой. Последний фермент активируется марганцем. Надо, однако, сказать, что, начиная с восстановления нитритов, дальнейший процесс изучен недостаточно. Промежуточные соединения не выделены, не исключено, что они являются иными. Для восстановления нитратов необходимо присутствие донора водорода и электронов, которыми являются восстановленные никотинамиды (НАДФ-Н2 или НАД-Н2). Поставщиком этих соединений является процесс дыхания. Именно поэтому восстановление нитратов тесно связано с дыхательным газообменом. Для нормального протекания процесса дыхания растение должно быть достаточно обеспечено углеводами. При усиленном поступлении нитратов содержание углеводов падает. При искусственном снижении содержания углеводов (выдерживание растений в темноте) нитраты не восстанавливаются, а накапливаются во всех органах растения. Интересно, что растения-нитратонакопители, к которым относятся некоторые среднеазиатские солянки, содержат мало углеводов и большое количество органических кислот. Большое влияние на восстановление нитратов оказывает свет. По-видимому, для восстановления нитратов могут быть непосредственно использованы продукты, образующиеся в процессе нециклического фотофосфорилирования (НАДФ-Н2, АТФ). Восстановление нитратов стимулируется при освещении синим светом. Возможно, это связано с тем, что флавин, который входит в состав нитратредуктазы, поглощает синий свет и активируется им. Наряду с нитратами в растение могут поступать и нитриты, которые также подвергаются восстановлению до аммиака. Однако нитриты при накоплении могут оказаться ядовитыми. Аммиак также может служить источником азотного питания для растений. При этом он поступает в растения даже быстрее, чем нитраты.
Более быстрое поглощение аммиака объясняется тем, что для его использования на построение органических веществ не требуется предварительного восстановления, которые необходимы при питании растений нитратами. Аммиак представляет собой основное и, по-видимому, единственное соединение, вовлекаемое в процессы азотистого обмена. При этом аммиак может быть разного происхождения: непосредственно поступивший из почвы, образовавшийся в результате восстановления нитратов или в результате вторичного распада белка в стареющих органах и клетках. Накопление аммиака в клетках приводит к нежелательным последствиям. Однако растения обладают способностью обезвреживать аммиак путем присоединения его к органическим кислотам с образованием амидов (глутамина, аспарагина). Этот процесс аналогичен обезвреживанию аммиака животными организмами в виде мочевины.
Существует целая группа растений, накапливающая большое количество органических кислот и с их помощью обезвреживающая аммиак, образуя соли. Это позволило разделить растения на амидные, образующие амиды,— аспарагин и глутамин — и аммиачные, образующие соли аммония. Изменяя рН клеточного сока, можно менять направление азотистого обмена, превращать растения с амидным типом обмена в аммиачные, и наоборот.
Каковы же пути образования амидов в растениях? В процессе дыхания в качестве промежуточных продуктов образуются органические кислоты, в том числе α-кетоглутаровая и щавелевоуксусная. Эти кислоты в результате реакции прямого восстановительного аминирования присоединяют аммиак. Катализируется реакция ферментом глутаматдегидрогеназой с активной группой НАД. Этот фермент локализован главным образом в митохондриях, так как именно в них образуются органические кислоты и восстановленные никотинамидные коферменты. Аспарагиновая кислота образуется по аналогии с глутаминовой кислотой путем восстановительного аминирования щавелевоуксусной кислоты.
Кроме того, аспарагиновая кислота может образовываться путем прямого аминирования фумаровой кислоты при участии фермента аспартазы. Синтез аспарагиновой кислоты стимулируется светом и локализован главным образом в хлоропластах. Глутаминовая и аспарагиновая аминокислоты, присоединяя еще одну молекулу аммиака, дают амиды — глутамин и аспарагин. Амидная группировка предохраняет глутаминовую и аспарагиновую кислоты от обратного отщепления аммиака при окислительном дезаминировании. Для того чтобы амиды образовались, необходима затрата энергии (АТФ) и присутствие ионов магния. Реакция катализируется ферментом глутаматсинтетазой.
Образование аспарагина происходит аналогичным путем.
Для образования амидов особенное значение имеет возраст растений. Как правило, чем моложе растение, тем больше его способность к образованию амидов. В более молодых органах (листьях) и даже в более молодых клетках одного и того же органа образование амидов идет интенсивнее. В пасоке и в соке гуттации обычно присутствуют амиды. Это показывает, что аммиак, поступивший в растения, может преобразовываться в форму амидов в живых клетках корня.
В тех случаях, когда углеводов не хватает или интенсивность дыхания ослаблена, амиды не образуются и аммиак накапливается, в результате может наступить отравление растений. Относительное количество образовавшегося аспарагина и глутамина и их роль различны в зависимости от вида растений и условий среды. Все же, по-видимому, образование аспарагина преобладает в том случае, когда происходит распад белков в семенах. В клетках корня и листа растущего растения идет главным образом образование глутамина. Таким образом, аспарагин — форма обезвреживания аммиака, образовавшегося на пути распада белка (регрессивная ветвь азотного обмена), тогда как глутамин—форма обезвреживания аммиака, используемого на пути синтеза белка (прогрессивная ветвь азотного обмена).
Растительный организм, в отличие от животного, обладает способностью синтезировать все необходимые ему аминокислоты, которые могут образовываться в разных органах растений — в листьях, корнях, верхушках стебля. Некоторые аминокислоты образуются непосредственно в хлоропластах и здесь используются на образование белка. Наиболее интенсивно синтез белка происходит в меристематических и молодых развивающихся тканях. Интересно, что в отрезанных листьях синтез белка полностью прекращается, это служит еще одним доказательством, что для синтеза белка нужен какой-то фактор, образующийся в корнях растений. Можно предположить, что это фитогормон, относящийся к группе цитокининов, или близкое к нему вещество.
Для нормального протекания синтеза белка в растительном организме нужны следующие условия: 1) обеспеченность азотом; 2) обеспеченность углеводами (углеводы необходимы и как материал для построения углеродистого скелета аминокислот, и как субстрат для дыхания); 3) высокая интенсивность и сопряженность процесса дыхания и фосфорилирования. На всех этапах преобразования азотистых веществ (восстановление нитратов, образование амидов, активизация аминокислот при синтезе белка и др.) необходима энергия, заключенная в макроэргических фосфорных связях (АТФ); 4) присутствие нуклеиновых кислот: ДНК необходима как вещество, в котором зашифрована информация о последовательности аминокислот в синтезируемой молекуле белка; и-РНК — как агент, обеспечивающий перенос информации от ДНК к рибосомам; т-РНК — как обеспечивающая перенос аминокислот к рибосомам; 5) рибосомы, структурные единицы, где происходит синтез белка; б) белки-ферменты, катализаторы синтеза белка (аминоацил-т-РНК-синтетазы); 7) ряд минеральных элементов (ионы Мg 2 + , Са 2+ ).
Образованием белка заканчивается прогрессивная ветвь азотистого обмена в растениях, которая преобладает главным образом в молодых растущих органах (первичный синтез белковых веществ). Однако в растениях идет и непрерывный распад белка. За 48 ч до 60% белка организма синтезируется вновь. Вторая половина схемы Прянишникова показывает последовательность появления соединений в процессе распада белков (регрессивная ветвь азотистого обмена). Белки распадаются до аминокислот и далее до аммиака. Аммиак вновь обезвреживается в виде амидов (аспарагин и глутамин). На основе этих соединений образуются аминокислоты. Это позволяет организму синтезировать новый набор аминокислот, который обеспечит построение иных белков со своим специфическим набором и последовательностью аминокислот (вторичный синтез белковых веществ). В условиях, обеспечивающих достаточно высокий уровень синтетических процессов, аммиак представляет собой прекрасный источник азотного питания для растений.
Значение аммиака как источника азотного питания имеет не только теоретическое, но и практическое значение. Получение удобрений, содержащих аммиачные соли.— процесс более простой и дешевый по сравнению с удобрениями, где азот содержится в форме нитратов. Опыты, проведенные в стерильных условиях, показали, что в качестве источника азотного питания могут быть использованы растениями и растворимые органические соединения (аминокислоты, амиды и мочевина). В естественных условиях эти соединения редко могут быть источником питания, поскольку их содержание в почве, как правило, очень мало. Для некоторых растений с уклоняющимся типом питания (паразиты, полупаразиты, сапрофиты, насекомоядные растения) источником питания может служить органический азот.
Источник