Биология и медицина
Одним из важных процессов, осуществляющихся в ходе индивидуального развития, является морфогенез. Морфогенез — это становление формы, образование морфологических структур и целостного организма в процессе индивидуального развития. Морфогенез растений обусловливается непрерывной активностью меристем, благодаря чему рост растения продолжается в течение всего онтогенеза, хотя и с разной интенсивностью.
Процесс и результат морфогенеза определяются генотипом организма, взаимодействием с индивидуальными условиями развития и закономерностями развития, общими для всех живых существ (полярность, симметрия, морфогенетическая корреляция). Вследствие полярности, например, верхушечная меристема корня производит только корень, а верхушка побега — побег и соцветия . С законами симметрии связана форма различных органов, листорасположение, актиноморфность или зигоморфность цветков и т.п. Действие корреляции, т.е. взаимосвязи разных признаков в целостном организме, сказывается на характерном для каждого вида внешнем облике. Естественное нарушение корреляций в ходе морфогенеза приводит к различным уродствам в строении организмов, а искусственное (путем прищипки, обрезки и т.д.) — к получению растения с полезными для человека признаками.
В ходе онтогенеза растение претерпевает возрастные изменения от эмбрионального состояния до глубокой старости и смерти. В связи с особенностями онтогенеза при переходе растений в генеративную фазу выделяют две их группы: монокарпики и поликарпики . К первой группе ( монокарпики ) относят однолетники, часть двулетников и некоторые многолетники ( бамбуки ), которые цветут и плодоносят только один раз в жизни, а затем отмирают. Ко второй группе ( поликарпики ) принадлежат многолетние травы, древесные и полудревесные растения, способные плодоносить в течение жизни многократно.
Весь онтогенез цветкового растения от возникновения зародыша в семени до естественной смерти особи часто подразделяют на следующие этапы онтогенеза :
— Дегенеративный, или виргинильный, — от прорастания семени до первого цветения.
— Генеративный — от первого до последнего цветения.
— Сенильный, или старческий , — с момента потери способности к цветению до отмирания.
В пределах этих периодов различают и более дробные этапы. Так, в группе виргинильных растений, как правило, выделяют проростки, недавно появившиеся из семян и сохраняющие зародышевые органы, — семядоли и остатки эндосперма ; ювенильные растения, несущие еще семядольные листья, и следующие за ними ювенильные листья — более мелкие и иногда по форме еще не вполне похожие на листья взрослых особей; имматурные особи, уже потерявшие ювенильные черты, но еще не вполне оформившиеся, «полувзрослые». В группе генеративных растений по обилию цветущих побегов, их размерам, соотношению живых и мертвых частей корней и корневищ различают молодые, средневзрослые, зрелые и старые генеративные особи.
Каждому виду растений свойствен свой темп заложения и развития органов. Так, у голосеменных формирование репродуктивных органов, ход оплодотворения и развития зародыша занимает около одного года (у ели ), а иногда и больше (у сосны ). У некоторых высших споровых , например у равноспоровых плаунов , этот процесс длится около 12-15 лет и больше. У покрытосеменных процессы споро- и гаметогенеза, оплодотворения и развития зародыша происходят чрезвычайно интенсивно, особенно у эфемеров (однолетних растений засушливых районов) — за 3-4 недели.
Для цветковых растений установлен ряд этапов органогенеза. Главнейшие из них: дифференциация стебля, закладка листьев и побегов второго порядка; дифференциация соцветия цветка, образование археспория в семязачатках; мега- и микроспорогенез; мега-и микрогаметогенез; формирование плода и семени.
Ссылки:
Источник
Оплодотворение.
Пыльцевые зерна, тем или иным образом попавшие на рыльце, — прорастают. Прорастание пыльцы начинается с разбухания зерна и образования пыльцевой трубки из вегетативной клетки. Пыльцевая трубка прорывает оболочку в более тонком ее месте – так называемой апертуре. Кончик пыльцевой трубки выделяет специальные вещества, размягчающие ткани рыльца и столбика. По мере роста пыльцевой трубки в нее переходит ядро вегетативной клетки и генеративной, которая делится и образует два спермия. Через микропиле семязачатка пыльцевая трубка проникает в зародышевый мешок, там она разрывается, и ее содержимое изливается внутрь. Один из спермиев сливается с яйцеклеткой, образуя зиготу, которая затем дает начало зародышу семени. Второй спермий сливается с центральным ядром, что приводит к образованию триплоидного ядра, развивающегося затем в триплоидный эндосперм. Таким образом, эндосперм у покрытосеменных триплоидный и вторичный, т.к. образуется после оплодотворения.
Весь этот процесс получил название двойного оплодотворения. Он был впервые описан русским ученым С.Г.Навашиным. (1898 г.).
3. Закономерности онтогенеза растений
Рассмотрим, преимущественно на примере злаковых, основные установленные наукой закономерности индивидуального развития (онтогенеза) растений, зависимость их роста и развития от влияния факторов внешней среды, прежде всего света и температуры.
Гипотеза Дж. Боннера
Создание клеточной теории, эволюционное учение, показавшее путь усложнения организмов по мере развития жизни, и расшифровка генетического кода, позволившая понять, как реализуется генетическая информация, обусловили возможность познания закономерностей индивидуального развития живых существ. Ученые вплотную подошли к решению вопроса о том, как в ходе онтогенеза реализуется закодированная в генотипе информация.
Наиболее удачно решается этот вопрос в гипотезе американского биохимика Дж. Боннера, разделяемой сейчас большинством биологов. Согласно Боннеру, в онтогенезе реализуется закодированная программа, состоящая из ряда подпрограмм. Каждая из них обусловливает формирование одной определенной группы признаков и свойств. После реализации первой подпрограммы включается в работу следующая генная система, ответственная за формирование другой группы признаков и свойств, за ней начинает работать третья – и так далее до завершения всего онтогенеза.
В приложении к растению, например злаковому, это выражается в следующем.
На начальных этапах онтогенеза включена подпрограмма, по которой реализуются набухание и прорастание семени, появление первых корней и листьев, растение укрепляется на земле, но питается в основном за счет веществ, запасенных в эндосперме еще на материнском организме. Затем, при включении следующей подпрограммы, начинается период образования новых листьев и корней, боковых побегов – фаза кущения (фаза розетки). На следующем этапе начинает формироваться соцветие, удлиняется стебель – фаза выхода в трубку. Позднее включаются подпрограммы образования соцветия, цветения, образования зерна, созревания.
Прохождение каждой из указанных фаз, связанных с формированием определенных признаков и свойств, строго необходимо и последовательно. Каждый следующий этап онтогенеза не может пройти ранее предыдущего, на каждом из них идет образование определенных морфологических структур, новых по сравнению с предыдущим этапом.
По таким же этапам идет развитие и растений других видов.
Изменение морфологии связано с изменением физиологических процессов и зависит от работы генетического аппарата. Чередование подпрограмм, включающих одновременное формирование ряда признаков и свойств, происходит в ответ на действие внутренних и внешних факторов; время переключения определяет длительность периода реализации каждой подпрограммы. Под действием внешних и внутренних факторов могут изменяться темпы онтогенеза, т. е. могут замедляться или ускоряться процессы прохождения фаз развития и их смены.
Источник
Глава 6. Рост и развитие растений
Процессы роста и развития растений имеет ряд отличительных особенностей по сравнению с животными организмами. Во-первых, растения способны размножаться вегетативным путем. Во-вторых, наличие мерестематических тканей у растений обеспечивает высокую скорость и способность к регенерации. В-третьих, для обеспечения питательными веществами растения поддерживают рост на протяжении всей жизни.
6.1. Понятие роста и развития. Общие закономерности роста
Каждый живой организм подвергается постоянным количественным и качественным изменениям, которые прекращаются только при известных условиях периодами покоя.
Рост – это количественные изменения в ходе развития, которые заключаются в необратимом увеличении размеров клетки, органа или целого организма.
Развитие – это качественные изменения компонентов организма, при которых имеющиеся функции преобразуются в другие. Развитие – это изменения, которые происходят в растительном организме в процессе его жизненного цикла. Если этот процесс рассматривать как установление формы, то он называется морфогенезом.
Примером роста может служить разрастание ветвей благодаря размножению и увеличению клеток.
Примерами развития являются образование проростков из семян при прорастании, образование цветка и т. д.
Процесс развития включает в себя целый ряд сложных и очень строго скоординированных химических превращений.
Кривая, характерная для роста всех органов, растений, популяций и т. д. (от сообщества до молекулярного уровня) имеет S-образный, или сигноидный вид (рис. 6.1).
Эту кривую можно разделить на ряд участков:
– начальная лаг-фаза, протяжение которой зависит от внутренних изменений, которые служат для подготовки к росту;
– логарифмическая фаза, или период, когда зависимость логарифма скорости роста от времени описывается прямой;
– фаза постепенного снижения скорости роста;
– фаза, на протяжении которой организм достигает стационарного состояния.
Рис 6.1. S-образная кривая роста:
I – лаг-фаза; II – логарифмическая фаза;
III– снижение скорости роста; IV – стационарное состояние
Протяженность каждой из слагающих S-кривую фаз и ее характер зависит от ряда внутренних и внешних факторов.
На длительность лаг-фазы прорастания семян влияет отсутствие или излишек гормонов, присутствие ингибиторов роста, физиологическая неспелость зародыша, недостаток воды и кислорода, отсутствие оптимальной температуры, световой индукции и др.
Протяженность логарифмической фазы связано с рядом специфических факторов и зависит от особенностей генетической программы развития, закодированной в ядре, градиента фитогормонов, интенсивности транспорта питательных элементов и т. д.
Торможение роста может быть результатом изменения факторов окружающей среды, а также определяться сдвигами, связанными с накоплением ингибиторов и своеобразных белков старения.
Полное торможение роста обычно связывают со старением организма, т. е. с тем периодом, когда скорость синтетических процессов идет на убыль.
Во время завершения роста происходит процесс накопления ингибирующих веществ, растительные органы начинают активно стареть. На последней стадии все растения или отдельные его части прекращают рост и могут впадать в состояние покоя. Эта конечная стадия растения и срок прихода стационарной фазы часто бывает задан наследственностью, но эти характеристики могут в какой-то степени изменяться под воздействием окружающей среды.
Кривые роста свидетельствуют о существовании разных типов физиологической регуляции роста. В период лаг-фазы функционируют механизмы, связанные с образованием ДНК и РНК, синтезом новых ферментов, белков, а также биосинтезом гормонов. В период логарифмической фазы наблюдается активное растяжение клеток, появление новых тканей и органов, увеличение их размеров, т. е. происходят этапы видимого роста. По наклону кривой можно часто довольно успешно судить о генетическом фонде, который определяет ростовой потенциал данного растения, а также определяет, насколько хорошо соответствуют условия потребностям растения.
В качестве критериев роста используют увеличение размеров, количества, объема клеток, сырой и сухой массы, содержание белков или ДНК. Но для измерения роста целого растения трудно найти подходящий масштаб. Так при измерении длины не обращают внимания на ветвление; навряд ли можно точно измерить объем. При определении количества клеток и ДНК не обращают внимания на размеры клетки, определение белка включает и запасные белки, определение массы также включает запасные вещества, а определение сырой массы, кроме всего включает и транспирационные потери и т. д. Поэтому в каждом случае масштаб, который можно использовать для измерения роста целого растения – это специфическая проблема.
Скорость роста побегов составляет в среднем 0,01 мм/мин (1,5 см/день), в тропиках – до 0,07 мм/мин (~ 10 см/день), а у побегов бамбука – 0,2 мм/мин (30 см/день).
Источник