Определение дерева дискретная математика

Деревья

Существует один простой и важный тип графов, которому разные авторы дали одинаковое название, это- деревья. Деревья важны не только потому, что они находят приложения в различных областях знания, но и в силу особого положения их в самой теории графов. Последнее вызвано предельной простотой строения деревьев. Часто при решении какой-либо задачи о графах ее сначала исследуют на деревьях. Примером служит гипотеза Улама, приведенная в гл. 2.

Ниже дано несколько определений дерева. Сначала в геометрических терминах изучается понятие центральности дерева. Затем рассматриваются деревья, естественным образом связанные с произвольным связным графом, именно деревья блоков и точек сочленения. Наконец, будет показано, как каждый остов графа G приводит к набору его независимых циклов, и обратно, для каждого ко-остова можно построить набор независимых коциклов.

Описание деревьев

Граф называется ациклическим, если в нем нет циклов.Дерево— это связный ациклический граф. Каждый граф, не содержащий циклов, называетсялесом. Таким образом, компонентами леса являются деревья. Существуют 23 различных дерева с восемью вершинами. Известны и другие определения дерева. В теореме 4.1 отражены некоторые из них.

Теорема.Для графа G следующие утверждения эквивалентны:

(2) любые две вершины в G соединены единственной простой цепью;

(3) G — связный граф и p=q+1;

(4) G — ациклический граф и p=q+1;

(5) G — ациклический граф, и если любую пару несмежных вершин

соединить ребром х, то в графе G + x будет точно один простой цикл;

(6) G — связный граф, отличный от Кр для р>=З, и если любую пару несмежных вершин соединить ребром х, то в графе G + x будет точно один простой цикл;

(7) G — граф, отличный от КзUК1 и КзUК2, p=q+1, и если любую пару несмежных вершин соединить ребром х, то в графе G + x будетточно один простой цикл.

Доказательство.(1) влечет (2). Поскольку G — связный граф, то любые две его вершины соединены простой цепью. Пусть Р1 и P2— две различные простые цепи, соединяющие вершины и и v, и пусть w — первая вершина, принадлежащая Р2 (при переходе по P1 из и в v), такая, что w принадлежит и P1 и Р2, но вершина, предшествующая ей в P1, не принадлежит Р2. Если w’ — следующая за w вершина в Р1 принадлежащая также Р2, то сегменты (части) цепей P1 и Р2, находящиеся между вершинами w и w’, образуют простой цикл в графе G. Поэтому, если G — ациклический граф, то между любыми двумя его вершинами существует самое большее одна простая цепь.

Читайте также:  Как пишется названия деревьев

(2) влечет (3). Ясно, что граф G — связный. Соотношение р =q+1 докажем по индукции. Утверждение очевидно для связных графов с одной и двумя вершинами. Предположим, что оно верно для графов, имеющих меньше р вершин. Если же граф G имеет р вершин, то удаление из него любого ребра делает граф G несвязным в силу единственности простых цепей; более того, получаемый граф будет иметь в точности две компоненты. По предположению индукции в каждой компоненте число вершин на единицу больше числа ребер. Таким образом, общее число ребер в графе G должно равняться р — 1.

(3) влечет (4). Предположим, что в графе G есть простой цикл длины п. Этот цикл содержит nвершин иnребер, а для любой из р —nвершин, не принадлежащих циклу, существует инцидентное ей ребро, которое лежит на геодезической, идущей от некоторой вершины цикла. Все такие ребра попарно различны; отсюда q>p, т. е. пришли к противоречию.

(4) влечет (5). Так как G — ациклический граф, то каждая его компонента является деревом. Если всего k компонент, то, поскольку в каждой из них число вершин на единицу больше числа ребер, имеем p = q + k. В нашем случае должно быть k=1, так что G — связный граф. Таким образом, G — дерево и любые две его вершины соединяет простая единственная цепь. Если к дереву G добавить ребро uv, то ребро вместе с единственной простой цепью, соединяющей вершины uи v, образует простой цикл, который также единствен в силу единственности простой цепи.

(5) влечет (6). Поскольку каждый полный граф КР для р>3 содержит простой цикл, граф G не может быть одним из этих графов. Граф G должен быть связным, так как в ином случае можно было бы добавить ребро х, соединяющее две вершины из разных компонент графа G, и граф G + x был бы ациклическим.

(6) влечет (7). Докажем, что любые две вершины графа G соединены единственной простой цепью, а тогда, поскольку (2) влечет (3), получим p=q+1. Ясно, что в графе G любые две вершины соединены простой цепью. Если какая-то пара вершин графа G соединена двумя простыми цепями, то из доказательства того, что (1) влечет (2), следует наличие у графа G простого цикла Z. В Z не может быть более трех вершин, так как иначе, соединив ребром х две несмежные вершины в Z, получим граф G + x, имеющий более одного простого цикла (если же в Z нет несмежных вершин, то в графе G более одного цикла). Таким образом, цикл Z есть К.3, и он должен быть собственным подграфом графа G, поскольку по предположению G не является полным графом КР с р>3. Так как G — связный граф, то можно предположить, что в G есть другая вершина, смежная с некоторой вершиной подграфа К3. Тогда ясно, что если к графу G добавлять ребро, то его можно добавить так, чтобы в графе G + x образовались, по крайней мере два простых цикла. Если больше нельзя добавить новых ребер, не нарушая для графа G второго условия из (6), то G есть КР с р>3 вопреки предположению.

Читайте также:  Деревья цветочно декоративные растения

(7) влечет (1). Если граф G имеет простой цикл, то этот цикл должен быть треугольником, являющимся компонентой графа G, что было показано в предыдущем абзаце. В этой компоненте соответственно три вершины и три ребра. Все остальные компоненты графа G должны быть деревьями, но для того, чтобы выполнялось соотношение p = q + l, должно быть не более одной компоненты, отличной от указанного треугольника. Если это дерево содержит простую цепь длины 2, то к графу G можно так добавить ребро х, чтобы образовать в графе G + x два простых цикла. Следовательно, этим деревом может быть или К1 или K2. Значит, граф G — или Кз U K1или К3U К2, а эти графы мы исключили из рассмотрения. Таким образом, G- ациклический граф. Но если G — ациклический граф и p=q+1, то G связен, поскольку (4) влечет (5), а (5) влечет (6). Итак,

G -дерево, и теорема доказана.

Так как для нетривиального дерева di = 2q=2(p— 1), то в дереве должно быть, по крайней мере, две вершины со степенями, меньшими 2.

Следствие.В любом нетривиальном дереве имеется, по крайней мере, две висячие вершины.

Этот результат также следует из теоремы.

Источник

Лекция 11

Дерево. Лес (ациклический граф). Остовный подграф. Остов. Взвешенный граф. Минимальный остов. Кодирование деревьев.

Базовые понятия и утверждения

1. Определение и основные свойства деревьев.

Определение. Граф называется деревом, если он связный и в нем нет циклов.

Одноэлементный граф, т.е. граф, имеющий одну вершину и не имеющий ребер, также считается деревом.

Граф называется лесом (или ациклическим графом), если в нем нет циклов. Очевидно, что каждая компонента связности леса — дерево.

Пример 1. Граф (рис. 3.19) не является ни деревом, ни лесом. Граф (рис. 3.20) — дерево. Граф (рис. 3.21) — лес, состоящий из четырех деревьев.

Пример 2. Представьте диаграммами все (с точностью до изоморфизма) деревья с пятью вершинами.

Читайте также:  Какие деревья есть в лесу на картине утро в сосновом лесу

◄ Имеется три различных (с точностью изоморфизма) дерева с пятью вершинами (рис. 3.22 — 3.24). ►

Деревья обладают рядом характеристических свойств, по наличию или отсутствию каждого их которых в рассматриваемом графе можно определить, является граф деревом или нет. Перечислим эти свойства:

1) граф — дерево в том и только в том случае, когда в нем нет циклов и ;

2) граф — дерево в том и только в том случае, когда он связный и ;

3) граф — дерево в том и только в том случае, когда он связный, и каждое его ребро является мостом;

4) граф — дерево в том и только в том случае, когда любые две вершины графа можно соединить простой цепью, притом единственной;

5) граф — дерево в том и только в том случае, когда в нем нет циклов и добавление к нему нового ребра приводит к образованию единственного простого цикла.

Также приведем одно из характеристических свойств леса: граф , имеющий компонент связности, является лесом в том и только в том случае, когда .

2. Остовы графа. Подграф графа называется остовным подграфом, если множество его вершин совпадает с множеством вершин графа .

Остовом обыкновенного графа называется его остовный подграф, являющийся деревом.

Пусть — связный граф. Если содержит хотя бы один цикл, то удалив из графа некоторое ребро этого цикла, мы уменьшим число циклов графа по крайней мере на единицу, сохранив при этом его связность. Ясно, что, последовательно разрушая циклы данного графа, можно прийти к остову графа. Поскольку дерево с вершинами имеет ровно ребро, то для получения остова нужно удалить из графа ребро, т.е. число ребер, равное цикломатическому числу связного графа .

Пусть теперь — произвольный граф с компонентами связности. Из каждой компоненты связности этого графа удалим ребро так, чтобы получился остов этой компоненты. В результате получим некоторый остовный подграф графа . Подсчитаем общее число ребер, которое нам пришлось для этого удалить. Сложив равенства , , получим:

.

Таким образом, чтобы получить остовный подграф, нужно, последовательно разрушая циклы графа, удалить из него число ребер, равное его цикломатическому числу.

Пример 3. Построим остов графа , диаграмма которого изображена на рис. 3.25. Удалим из графа ребро ; получим граф (рис. 3.26). Из графа удалим ребро ; получим граф (рис. 3.27). Из графа удалим ребро ; получим граф (рис. 3.28), который является одним из остовов графа .

Источник

Оцените статью