Космическая роль растений
ной площади листа. Взрослые листья отдают свои ассимиляты в аттрагирующие зоны растения, оставляя на собственные нужды 10 — 40% ассимилятов и почти не обмениваясь между собой продуктами фотосинтеза. Последнее явление, названное А. Л. Курсановым (1961) «суровым законом», способствует лучшему распределению ассимилятов в целом растении. Стареющие листья со слабой фотосинтетической активностью отдают другим органам не только ассимиляты, но и продукты распада структур цитоплазмы.
Такого рода смена функций листа в онтогенезе важна при формировании урожая. Потребление ассимилятов молодым листом приводит к построению добавочного фотосинтетического аппарата, чем обеспечивается увеличение фотосинтетической активности в геометрической прогрессии. Следует отметить также, что в онтогенезе изменяется соотношение путей фотосинтетического метаболизма. В условиях, когда внешние факторы не лимитируют скорость фотосинтеза, этот процесс целиком детерминируется ростовой функцией (А. Т. Мок-роносов, 1981).
Современные знания о процессе фотосинтеза как на уровне растения, так и фитоценоза, позволяют видеть основные направления оптимизации фотосинтеза и увеличения продуктивности растений. Наиболее полно вопросы фотосинтетической деятельности растений в посевах, связанной с образованием хозяйственного урожая (используемого человеком), его доли в биологическом урожае (т. е. суммарной массе всех органов растения), освещены в работах А. А. Ничипоровича. Наивысшие урожаи могут быть обеспечены созданием следующих оптимальных условий: 1) увеличением листовой поверхности в посевах; 2) удлинением времени активной работы фотосинтетического аппарата в течение каждых суток и вегетационного периода (поддержка агротехникой и минеральными удобрениями); 3) высокой интенсивностью и продуктивностью фотосинтеза, максимальными суточными приростами сухого вещества; 4) максимальным притоком продуктов фотосинтеза из всех фотосинтезирующих органов в хозяйственно важные органы и высоким уровнем использования ассимилятов в ходе биосинтетических процессов.
Для получения высоких урожаев сельскохозяйственных культур необходима селекционно-генетическая работа, направленная на повышение интенсивности фотосинтеза, скорости оттока ассимилятов, на увеличение чистой продуктивности фотосинтеза.
К. А. Тимирязев, который первым начал изучать космическую роль зеленых растений, 3 в публичной лекции, прочитанной в 1875 г., следующим образом представил эту проблему слушателям: «. луч солнца. упал на зеленую былинку пшеничного ростка . Он . затратился на внутреннюю работу . превратясь в растворимый сахар . отложился, наконец, в зерне в виде крахмала или в виде клейковины. В той или другой форме он вошел в состав хлеба, который послужил нам пищей. Он преобразился в наши мускулы, в
наши нервы. Этот луч солнца согревает нас. Он приводит нас в движение. Быть может, в эту минуту он играет в нашем мозгу».
Действительно, фотосинтез — единственный процесс на Земле, идущий в грандиозных масштабах и связанный с превращением энергии солнечного света в энергию химических связей. Эта космическая энергия, запасенная зелеными растениями, составляет основу для жизнедеятельности всех других гетеротрофных организмов на Земле от бактерий до человека. Выделяют пять аспектов космической и планетарной роли растений, которые рассмотрены ниже.
1. Накопление органической массы. В процес- се фотосинтеза наземные растения образуют 100—172 млрд. т, а растения морей и океанов — 60 — 70 млрд. т биомассы в год (в пересчете на сухое вещество). Общая масса растений на Земле в настоящее время составляет 2402,7 млрд. т, причем 90% этой сухой массы приходится на целлюлозу. На долю на- земных растений приходится 2402,5 млрд. т, а на растения гидросферы — всего 0,2 млрд. т (из-за недостатка света). Общая масса животных и микроорганизмов на Земле — 23 млрд. т, что составляет около 1 % от • растительной биомассы. Из этого количества 20 млрд. т приходится на обитателей суши, а 3 млрд. т — на животных и микроорганизмы гидросферы.
. За время существования жизни на Земле органические остатки растений и животных накапливались и модифицировались. На суше эти органические вещества представлены в виде подстилки, гумуса и торфа, из которых при определенных условиях в толще литосферы формировался уголь. В морях и океанах органические остатки (главным образом животного происхождения) оседали на дно и входили в состав осадочных пород. При опускании в более глубокие области литосферы из этих остатков под действием микроорганизмов, повышенных температур и давления образовывались газ и нефть. Масса органических веществ подстилки, торфа и гумуса оценивается в 194, 220 и 2500 млрд. т соответственно. Нефть и газ составляют 10000—12000 млрд. т. Содержание органических веществ в осадочных породах достигает 20000000 млрд. т (по углероду).
Особенно интенсивное накопление мертвых органических остатков происходило 300 млн. лет назад в палеозойскую эру. Запасы древесины, а в последние 200 лет угля, нефти и газа используются человеком для получения энергии, необходимой в быту, промышленности и сельском хозяйстве.
2. Обеспечение постоянства содержания С02 в атмосфере. Образование органических веществ гумуса, осадочных пород и горючих ископаемых выводило значи- тельные количества С02 из круговорота углерода. В атмосфере Земли С02 становилось все меньше и в настоящее время он составляет только 0,03% (по объему), или (в абсолютных значениях) 711 млрд. т в пересчете на углерод.
В кайнозойской эре содержание диоксида углерода в атмосфере стабилизировалось и испытывало лишь суточные, сезонные и более длительные геохимические колебания. Эта стабилизация достигается сбалансированным связыванием и освобождением С02, осуществляемых в глобальном масштабе. Связывание С02 в ходе фотосинтеза и образование карбонатов компенсируется выделением С02 за счет других процессов. Ежегодное поступление С02 в атмосферу в пересчете на углерод (в млрд. т) обусловлено: дыханием растений — 10, дыханием и брожением микроорганизмов — 25, дыханием животных и человека — 1,6, производственной деятельностью людей — 5, геохимическими процессами — 0,05′. При отсутствии этого поступления весь С02 атмосферы был бы связан в ходе фотосинтеза за 6 — 7 лет. Мощным резервом диоксида углерода является Мировой океан, в водах которого растворено в 60 раз больше С02. чем находится в атмосфере. Фотосинтез, с одной стороны, дыхание организмов и карбонатная система океана, с другой, поддерживают относительно постоянный уровень С02 в атмосфере.
Однако за последние десятилетия из-за все более возрастающего сжигания человеком горючих ископаемых, а также из-за вырубки лесов и разложения гумуса содержание С02 в атмосфере начало увеличиваться примерно на 0,23% в год. Это обстоятельство может иметь далеко идущие последствия в связи с тем, что концентрация С02 оказывает влияние на тепловой режим Земли (см. ниже).
3. Парниковый эффект. Поверхность Земли полу- чает теплоту главным образом от Солнца. Часть этой теплоты поступает обратно в космос в виде инфракрас- ных лучей. Диоксид углерода в атмосфере, а также вода поглощают инфракрасное излучение и таким образом сохраняют значительное количество теплоты на Земле (парниковый эффект). Микроорганизмы и растения в про- цессе дыхания или брожения поставляют 85 % обще- го количества С02, поступающего ежегодно в атмосфе- ру, и вследствие этого оказывают влияние на тепловой режим нашей планеты.
Тенденция к повышению содержания С02 в атмосфере из-за сжигания огромных количеств нефти, газа и из-за других причин, указанных выше, может способствовать увеличению средней температуры на поверхности Земли, что приведет к ускорению таяния ледников в горах и на полюсах и затоплению прибрежных зон. Возможно, однако, что повышение концентрации С02 будет способствовать усилению фотосинтеза растений, что устранит избыточное накопление диоксида углерода. Известно, что изменение концентрации С02 в биосфере выступает как элемент обратной связи.
1 Приводимые цифры имеют приблизительный характер и различаются у разных авторов.
4. Накопление кислорода в атмосфере. Первоначально в атмосфере Земли 02 присутствовал в следо-
Источник
Космическая роль растений: в чем она заключается?
Космическая роль растений уже давно доказана многими учеными. Особую роль в исследовании этого процесса сыграл российский исследователь Климент Тимирязев. Именно он доказал, что данный процесс имеет жизненно важное значение. На каких же особенностях строения основано это уникальное свойство растительных организмов?
Космическая роль зеленых растений
Все живые организмы характеризуются определенными признаками. Однако все они нуждаются в кислороде для осуществления процесса дыхания. Космическая роль растений и заключается в обеспечении всех организмов этим жизненно важным веществом. Только растения способны производить его в ходе уникального процесса, который называется фотосинтез.
Представители растений: характерные черты строения
Почему же другие организмы не производят кислород в процессе своей жизнедеятельности? Потому что только растения имеют уникальные черты строения. Прежде всего это наличие в клетке зеленых пластид хлоропластов. На внутренней поверхности этих органелл происходит процесс фотосинтеза, которым определяется космическая роль растений. Характерными признаками представителей этого царства живой природы является также наличие углевода целлюлозы в клеточной стенке. Это вещество придает поверхностному аппарату прочность и жесткость. В качестве запасного питательного вещества в цитоплазме клеток откладываются гранулы крахмала. Этот полисахарид образуется из многочисленных молекул глюкозы, синтезирующейся в процессе фотосинтеза. Для растений также характерен неограниченный рост. Это значит, что процесс количественных изменений у них происходит в течение всей жизни.
Суть процесса фотосинтеза
Итак, космическая роль растений проявляется в ходе фотосинтеза. Само название этого процесса свидетельствует об участии солнечного излучения в нем. И действительно, фотосинтез заключается в образовании органических веществ из минеральных при условии наличия квантов света. Происходит он только в зеленых пластидах хлоропластах. На их внутренней поверхности углекислый газ взаимодействует с водой. Продуктами этой уникальной химической реакции является моносахарид глюкоза и кислород. Первое вещество растения используют в качестве источника энергии для осуществления процессов жизнедеятельности. А кислород участвует в процессах дыхания абсолютно всех живых организмов.
Условия протекания фотосинтеза
Синтез органических веществ и кислорода, в котором заключается космическая роль растений на земле, возможен только при наличии солнечного света. Учеными доказано, что от его количества зависит и интенсивность фотосинтеза. Она возрастает до освещенности в 15 тысяч люкс, а после идет на спад. Осенью происходит естественное уменьшение количества солнечного света. В результате листья меняют цвет и опадают. Суть этого процесса заключается в превращении зеленых пластид в желтые и багряные, которые называются хромопласты. При этом лист уже не может выполнять свои функции и прекращает жизнедеятельность. Листопад имеет защитное значение для растений в холодный период, поскольку этот процесс практически прекращает транспирацию. Ведь терять влагу в период ее недостатка очень неразумно.
Солнечное излучение необходимо только на первой фазе фотосинтеза. Она так и называется — световая. В течение этого периода происходит накопление энергии для запуска сложной химической реакции и активации хлорофилла. После этого свет уже не нужен. Наступает темновая фаза, в ходе которой происходит накопление углеводов. Также обязательными условиями протекания фотосинтеза является наличие воды и углекислого газа.
Фотосинтез: космическая роль растений
Растения осуществляют удивительный круговорот. Они выделяют кислород, все живые организмы используют это вещество для окисления органических веществ, в результате чего выделяют углекислый газ. Именно он является необходимым условием и реагентом в процессе фотосинтеза. Способны к этому только растения. По типу питания они являются автотрофами, способными самостоятельно производить органические вещества. Космическая роль зеленых растений заключается в обеспечении необходимых условий для жизни живых организмов. Причем, если традиционно считается, что именно леса являются «легкими планеты», то на самом деле огромная часть производимого на планете кислорода приходится на долю водных растений.
Итак, космическая роль растений заключается в осуществлении процесса фотосинтеза. В его ходе в пластидах хлоропластах при наличии воды и углекислого газа происходит волшебное появление глюкозы и кислорода, необходимого для дыхания всех живых организмов, обитающих в биосфере.
Источник