Значение воды в жизнедеятельности растений
Вода как условие жизни растений. Вода необходима для жизни любого растения. Она составляет 70-95% сырой массы тела растения. У растений все процессы жизнедеятельности протекают с использованием воды.
Обмен веществ в растительном организме происходит только при достаточном количестве воды. С водой в растение поступают минеральные соли из почвы. Она обеспечивает непрерывный ток питательных веществ по проводящей системе. Без воды не могут прорастать семена, не будет в зеленых листьях фотосинтеза. Вода в виде растворов, наполняющих клетки и ткани растения, обеспечивает ему упругость, сохранение определенной формы.
Поглощение воды из внешней среды — обязательное условие существования растительного организма.
Растение получает воду главным образом из почвы с помощью корневых волосков корня. Наземные части растения, в основном листья, через устьица испаряют значительное количество воды. Эта потеря влаги регулярно восполняется, так как корни постоянно поглощают воду.
Бывает, что в жарки часы дня расход воды испарением превышает ее поступление. Тогда у растения листья увядают, особенно самые нижние. За ночные часы, когда корни продолжают всасывать воду, а испарение у растения снижено, содержание воды в клетках снова восстанавливается и клетки и органы растения вновь приобретают упругое состояние.
Главным способом поступления воды в живые клетки является ее осмотическое поглощение. Осмос — это способность воды поступать из окружающей среды в клеточные растворы. При этом поступление воды приводит к увеличению объема жидкости в клетке. Сила осмотического поглощения, с которой вода входит в клетку, называется сосущей силой.
Водный обмен у растений. Поглощение воды из почвы и потеря ее при испарении создают постоянный водный обмен у растения. Водный обмен осуществляется с током воды через все органы растения. Он складывается из трех этапов: 1) поглощения воды корнями, 2) передвижения ее по сосудам древесины, 3) испарения воды листьями. Обычно при нормальном водном обмене сколько воды поступает в растение, столько ее и испаряется.
Растение пропускает через себя много воды. Например, подсолнечник за один день испаряет до 800 г воды, а за лето — до 200 кг. Каждое растение пшеницы (также ячмень, овес) за день испаряет около 50 г воды. Представляете, сколько надо воды для целого пшеничного поля?
Из всего огромного количества воды, проходящей через растение, лишь очень незначительная ее часть используется им на синтез веществ своего тела. Только 0,2% всей пропускаемой воды растение усваивает. Остальные 99,8% поглощенной воды тратятся на испарение. Но эта «трата» очень важна для растения.
Растение капусты и количество воды, которое оно испарило за лето
Корни, поглощая воду и почвы, вместе с ней постоянно привносят в организм растворенные минеральные соли. Поступив с водой в растение, соли не испаряются, а остаются в нем, образуя так называемое сухое вещество. Накопление сухого вещества в теле растения — результат совместной работы корней и листьев.
Водный ток в растении идет в восходящем направлении: снизу вверх. Он зависит от силы всасывания воды клетками корневых волосков внизу и от интенсивности испарения наверху. Постоянный ток воды от корневой системы к надземным частям растения служит средством транспортировки и накопления в органах тела минеральных веществ и различных химических соединений, поступающих из корней. Он объединяет все органы растения в единое целое. Помимо этого, восходящий ток воды в растении необходим для нормального водоснабжения всех клеток. Особенно он важен для осуществления процесса фотосинтеза в листьях.
Достаточное количество или нехватка влаги в клетках влияют на все жизнедеятельные процессы растения.
Экологические группы растений. Сухопутные растения произрастают в различных природных условиях. Группы растений, выделяемые по отношению к какому-либо одному фактору среды, определяющему приспособительные свойства организмов, называются экологическими группами. По отношению к воде растения делят на следующие экологические группы: водные травы, обитающие в воде (элодея); влаголюбивые, частично погруженные в воду (калужница, рогоз); живущие в условиях умеренного увлажнения (ландыш, ель, капуста); обитатели сухих мест (саксаул, ковыль, кактус, алоэ).
Растения разных экологических групп по отношению к воде: 1 — лотос; 2 — калужница; 3 — рогоз; 4 — ковыль; 5 — кермек; 6 — саксаул; 7 — цереус
Гидатофиты (от греч. гидатос — «вода», фитон — «растение») — водные травы (элодея, лотос, кувшинки). Гидатофиты полностью погружены в воду. Стебли почти не имеют механических тканей и поддерживаются водой. В тканях растений имеется много крупных межклетников, заполненных воздухом.
Гидрофиты (от греч. гидрос — «водный») — растения, частично погруженные в воду (стрелолист, камыш, рогоз, тростник, аир). Обычно обитают по берегам водоемов, на сырых лугах.
Гигрофиты (от греч. гигра — «влага») — растения влажных мест с высокой влажностью воздуха (калужница, осоки, циперус, ситник).
Мезофиты (от греч. мезос — «средний») — растения, живущие в условиях умеренного увлажнения и хорошего минерального питания (сурепка, нивяник, ландыш, земляника, яблоня, ель, дуб). Растут в лесах, на лугах, в поле. Большинство сельскохозяйственных растений — мезофиты. Они лучше развиваются при дополнительном поливе.
Ксерофиты (от греч. ксерос — «сухой») — растения сухих местообитаний, где воды в почве мало, а воздух сухой (алоэ, кактусы, саксаул). Среди ксерофитов различают сухие и сочные. Сочные ксерофиты с мясистыми листьями (алоэ, толстянки) или мясистыми стеблями (кактусы — опунция, маммилярия, цереус), запасающие воду в своих тканях, называют суккулентами. Сухие ксерофиты — склерофиты (от греч. склерос — «жесткий») приспособлены к жесткой экономии воды, к уменьшению испарения (ковыль, саксаул, кермек, верблюжья колючка).
Вода — важнейшее условие протекания всех процессов жизнедеятельности растения. Ее роль в организме растения многообразна. Вода — главный компонент в транспортной системе при перемещении веществ между клетками, тканями и между органами растения. От притока воды зависит жизнь растительного организма. В ходе эволюции у растений выработались приспособления для жизни в различных условиях обводненности.
- В каких процессах жизнедеятельности участвует вода?
- Чем обусловлена непрерывность восходящего тока воды у растения?
- Что протекает в стебле по нисходящему току?
Источник
Почему растениям нужна вода
Вода необходима практически всем организмам на планете. Она выполняет множество разных функций и содержится в каждой клетке любого живого существа. В частности, растения не могут существовать без постоянного поступления воды.
Для жизни этим организмам нужны минеральные вещества. Они могут поступать в разные отделы растения только в растворённом виде. Вода необходима для обмена веществ, то есть для получения полезных микроэлементов из почвы. Собственно, саму воду растения тоже получают из земли, она впитывается корнями.
Влага постоянно испаряется с поверхности листьев, особенно во время жары. Когда жидкости остаётся слишком мало, то листья начинают завядать. Поэтому нужно своевременно поливать растение, чтобы оно не погибло. Также растение может впитывать определённое количество влаги с помощью листьев. Поэтому флористы рекомендуют опрыскивать некоторые виды цветов водой.
Благодаря испарению происходит непрерывное движение воды и растворённых полезных веществ внутри растения. Вся «пустая» вода уходит, а на её место приходит жидкость, богатая микроэлементами. При испарении влаги также происходит охлаждение растения, что тоже очень важно. Поэтому растения могут развиваться только если в почве находится достаточно воды.
Вода также участвует в процессе фотосинтеза, благодаря которому растение получает энергию для роста. Во время световой фазы фотосинтеза свет превращается в органические вещества, а вода распадается на водород и кислород, после чего кислород выходит в атмосферу.
Таким образом, вода необходима растениям для доставки питательных веществ к разным отделам, для получения энергии в ходе фотосинтеза и для охлаждения.
Источник
Как деревья поднимают воду высоко наверх
Казалось бы довольно простой вопрос из школьной биологии: как вода из почвы поднимается на много метров вверх до листьев дерева. Секвойя иногда вырастает высотой 100 метров, и вода транспортируется до самой верхушки без насосов и моторов в корнях, и всё против силы тяжести. Но ответ довольно сложен, действуют несколько разных физических факторов, и ученые до сих пор уточняют, какой из них играет большую роль.
Вода — основа жизни на Земле, и для деревьев она важна не меньше, чем для людей. Раскрытие механизмов транспортировки воды на верх в деревьях лежит на стыке следующих наук: физика, гидравлика, химия, биология, и цитология (наука изучающая клетки).
Первое, что вспоминается, когда задумываешься о транспортировки воды деревьями — это капиллярный эффект. Смысл в том, что жидкость поднимается в узких каналах вверх, благодаря силам взаимодействия молекул (смачивание). Причем чем меньше диаметр канала, тем выше может подняться cтолб жидкости. Этот эффект довольно нагляден в быту (на различных пористых материалах): так намокает вверх снежок в грязной луже, салфетка или кирпич, если касается воды.
Но одного капиллярного эффекта тут недостаточно: длинных трубок в прямом смысле в проводящей ткани (ксилеме) дерева нет (там клеточные стенки), да и при нормальном давлении столб воды не может быть выше 10,3 м. Для кустов пойдет, но большинство деревьев растут выше. Чтобы поднять воду еще выше, нужно большее давление (выше атмосферного ~10 раз в случае гигантов секвой и эвкалиптов). Какой же природный насос его создает? А давление в коре дерева приличное, есть много практических опытов это доказывающих.
У деревьев в корнях такой насос есть — работает он на принципах прямого осмоса. В клетках корней есть мембраны с особой проводимостью, давление воды повышается за счет различной концентрации растворенных солей в почве и в тканях дерева (у корней живого дерева вода с меньшим содержанием солей). Клетки работают как каскад насосов. Соли остаются в тканях дерева, вода поступает для роста новых клеток и процесса фотосинтеза, а излишек (90%) просто испаряется через листья (там есть регулируемые поры). Осмос работает и весной, пока еще нет листьев.
А вот к испарению воды с листьев стоит присмотреться подробнее. Оно тоже влияет на тягу воды от корней к верху дерева (сила Лапласа), и называется весь процесс транспирация. Транспирация не только работает на перенос жидкости в дереве, но и защищает его от перегрева. Важным условием работы такого испарительного насоса является когезия (неразрывность) транспортируемой воды в ксилеме и адгезия к капиллярам. Испарение воды с листьев «подсасывает» пониженным давлением новую воду снизу вверх. Ток воды наверх дерева может достигать 2 мм в секунду.
А с ростом высоты дерева, повышается влияние электрических факторов (да без электрических сил не обошлось, в микромире они играют важнейшую роль). Растет разница электрических потенциалов, и это влияет на «сцепляемость» молекул воды и неразрывность поднимаемого потока.
Как видим, деревья используют различные методы транспортировки воды вверх против силы тяжести, причем в разное время года и для разных растений действуют различные «насосы» или их комбинации. Деревья, которые нас окружают, могут удивлять, ученым еще есть над чем поработать.
Источник