Подготовительный этап дыхания растений

Раздел 7. Дыхание растений

Дыхание – это процесс окисления органических веществ, в результате которого выделяется энергия, необходимая для протекания процессов жизнедеятельности. Значительная часть энергии дыхания, превращается в энергию макроэргических соединений (АТФ). Эта энергия используется на активное поглощение и транспорт веществ, биосинтез сложных органических соединений, поддержание клеточных структур и другие. Дыхание сопровождается образованием разнообразных промежуточных продуктов, являющихся исходным материалом для синтеза компонентов протоплазмы – аминокислот, белков, жиров, углеводов и других веществ.

Дыхание представляет собой комплекс сопряженных окислительно-восстановительных реакций, катализируемых ферментами. Основным типом окислительной реакции является дегидрирование – отнятие водорода от окисляемых веществ ферментами дегидрогеназами, коферментами которых являются НАД + , НАДФ + , ФАД, ФМН.

Различают дихотомическое и апотомическое дыхание. Дихотомическое дыхание осуществляется в два этапа: первый – анаэробный этап (гликолиз) сопровождается расщеплением гексозы на две молекулы пировиноградной кислоты (ПВК), второй – аэробный, который включает цикл ди- и трикарбоновых кислот (цикл Кребса) и окислительное фосфорилирование. При окислительном фосфорилировании энергия восстановленных коферментов (НАД(Ф)Н или ФАДН2) трансформируется в энергию АТФ.

В результате апотомического дыхания, в основе которого лежит окислительное декарбоксилирование глюкозы (пентозофосфатный цикл), образуются пятиуглеродные сахара. Они используются в реакциях синтеза нуклеиновых кислот, макроэргических соединений, коферментов, витаминов, компонентов клеточных стенок.

Таким образом, дыхание имеет значение для жизнедеятельности организма не только как источник энергии, но и как источник различных соединений, необходимых для многочисленных синтетических реакций.

В аэробных условиях органические вещества окисляются кислородом воздуха с образованием углекислого газа и воды. Аэробное дыхание выражается уравнением:

С6Н12О6 + 6О2 6СО2 + 6Н2О + 2874 кДж

В анаэробных условиях происходит окисление органических веществ по типу брожения, а конечными продуктами окисления являются спирт, уксусная, молочная и масляная кислоты. При накоплении в растениях в больших количествах продукты анаэробного дыхания токсичны. Анаэробное дыхание наблюдается при затоплении растений, хранении продукции растениеводства в плохо вентилируемых помещениях.

Основными субстратами дыхания являются моносахариды, находящиеся в свободном состоянии или образующиеся при гидролизе олиго- и полисахаридов, а также липиды, белки и органические кислоты.

Основными количественными показателями дыхания являются интенсивность дыхания (работа 26) и дыхательный коэффициент (работа 27). Для определения интенсивности дыхания используют различные методы. Из суммарного уравнения дыхания видно, что при дыхании происходит окисление органических веществ и уменьшение сухой массы растений (работа 25), поглощение кислорода, выделение углекислого газа и энергии. Соответственно все методы определения интенсивности дыхания можно разделить на следующие четыре группы:

  1. Учет количества поглощенного кислорода (мл О2/гчас);
  2. Учет количества выделенного углекислого газа (мл или мг СО2/ гчас);
  3. Определение убыли сухой массы (г/гсут или %/гсут);
  4. Учет количества выделенной энергии (кДж/1 моль).
Читайте также:  Паразитные сорные растения примеры

Источник

02. Дыхание растений

Клеточное дыхание — универсальный процесс, присущий всем орга-низмам, тканям, клеткам, не прекращающийся в течение всего периода жизнедеятельности и обеспечивающий энергией и пластическими веществами. последовательных сопряженных ферментативных окислительно-восстановительных реакций, в ходе которых происходят постепенное изменение химической природы органических соединений, трансформация и использование их внутренней энергии.

Дыхание относится к категории катаболических процессов. Процесс клеточного дыхания включает несколько этапов и осуществляется последовательно и скоординированно в нескольких компартментах клетки.

Подготовительный этап — гидролиз полимеров и сложных соединений (полисахариды, белки, жиры) — происходит в основном в лизосомах. Гликолиз — первый этап окисления субстрата — осуществляется в гиалоплазме (хлоропласты). Цикл Кребса локализован в матриксе митохондрий. Это заключительный этап превращения субстрата. Электрон-транспортная цепь дыхания — заключительный этап трансформации энергии окисляемого субстрата с участием кислорода.

Несмотря на сложность реакций процесса клеточного дыхания, их объединяют несколько типов окислительно-восстановительных реакций:

  • При окислении донор отдает, а акцептор принимает только электроны:
    Fe 2+ -e=Fe 3+
    (цитохромы, железосерные белки и т. п.).
  • При окислении донор отдает, а акцептор принимает электроны и протоны:
    АН2 + В ^ А + ВН2
    (дегидрогеназы, оксидазы).
  • Часто в таких реакциях участвует предварительно фосфорилированный или гидратированный донор Окисление связано с включением одного или двух атомов кислорода в молекулу окисляемого субстрата с образованием окисей и перекисей (оксигеназы).

Дыхание — сложная многозвенная система

Дыхание растений

Дыхание, подобно фотосинтезу, сложный окислительно-восстановительный процесc, идущий через ряд этапов. На его промежуточных стадиях образуются органические соединения, которые затем используются в различных метаболических реакциях. К промежуточным соединениям относят органические кислоты и пентозы образующиеся при разных путях дыхательного распада. Таким образом, процесс дыхания — источник многих метаболитов. Несмотря на то что процесс дыхания в суммарном виде противоположен фотосинтезу, в некоторых случаях они могут дополнять друг друга.

Читайте также:  Питомник растений во фряново

Оба процесса являются поставщиками как энергетических эквивалентов (АТФ, НАДФ-Н), так и метаболитов. С химической точки зрения дыхание — это медленное окисление. При окислительно-восстановительных реакциях происходит перенос водорода или электрона от донора ДН2 (который окисляется) к акцептору А (который восстанавливается): ДН2 +А ->Д + АН2.

Для того чтобы судить о направлении движения электронов между какими-либо двумя веществами, вводится понятие стандартного восстановительного потенциала (Е0) — это мера электронного давления. За нуль потенциала условно принят восстановительный потенциал реакции H2 —> 2Н+ + 2е. Чем более отрицательна величина восстановительного потенциала, тем больше способность данного вещества отдавать электроны (окисляться) или служить восстановителем.

В создании современных представлений о биологическом окислении большое значение имели работы двух крупнейших русских ученых — В.И. Палладина и А.Н. Баха.

Ферменты, участвующие в процессе дыхания, можно разделить на несколько функциональных групп:

  • оксидоредуктазы (дегидрогеназы, оксидазы);
  • изомеразы;
  • карбоксилазы;
  • трансферазы;
  • оксигеназы.

Изомеразы, карбоксилазы, трансферазы и некоторые другие ферменты не участвуют непосредственно в окислительных реакциях, но они преобразуют окисляемый субстрат таким образом, что он становится более «удобным» для окислительных ферментов. Основную функциональную группу ферментов дыхания — оксидоредуктазы — традиционно делят на дегидрогеназы, активирующие водород субстрата, и оксидазы, активирующие молекулярный кислород.

Если вам понравился наш сайт, то расскажите о нем своим друзьям в соцсетях, нажав на кнопки ниже. Этим самым вы поможете развитию нашего проекта. Свои замечания по представленному материалу напишите в комментариях.

Источник

020. Дыхание растений

Клеточное дыхание — универсальный процесс, присущий всем орга-низмам, тканям, клеткам, не прекращающийся в течение всего периода жизнедеятельности и обеспечивающий энергией и пластическими веществами. последовательных сопряженных ферментативных окислительно-восстановительных реакций, в ходе которых происходят постепенное изменение химической природы органических соединений, трансформация и использование их внутренней энергии.

Дыхание относится к категории катаболических процессов. Процесс клеточного дыхания включает несколько этапов и осуществляется последовательно и скоординированно в нескольких компартментах клетки.

Подготовительный этап — гидролиз полимеров и сложных соединений (полисахариды, белки, жиры) — происходит в основном в лизосомах. Гликолиз — первый этап окисления субстрата — осуществляется в гиалоплазме (хлоропласты). Цикл Кребса локализован в матриксе митохондрий. Это заключительный этап превращения субстрата. Электрон-транспортная цепь дыхания — заключительный этап трансформации энергии окисляемого субстрата с участием кислорода.

Читайте также:  Обработка растений перекисью водорода томатов

Несмотря на сложность реакций процесса клеточного дыхания, их объединяют несколько типов окислительно-восстановительных реакций:

  • При окислении донор отдает, а акцептор принимает только электроны:
    Fe 2+ -e=Fe 3+
    (цитохромы, железосерные белки и т. п.).
  • При окислении донор отдает, а акцептор принимает электроны и протоны:
    АН2 + В ^ А + ВН2
    (дегидрогеназы, оксидазы).
  • Часто в таких реакциях участвует предварительно фосфорилированный или гидратированный донор Окисление связано с включением одного или двух атомов кислорода в молекулу окисляемого субстрата с образованием окисей и перекисей (оксигеназы).

Дыхание — сложная многозвенная система

Дыхание растений

Дыхание, подобно фотосинтезу, сложный окислительно-восстановительный процесc, идущий через ряд этапов. На его промежуточных стадиях образуются органические соединения, которые затем используются в различных метаболических реакциях. К промежуточным соединениям относят органические кислоты и пентозы образующиеся при разных путях дыхательного распада. Таким образом, процесс дыхания — источник многих метаболитов. Несмотря на то что процесс дыхания в суммарном виде противоположен фотосинтезу, в некоторых случаях они могут дополнять друг друга.

Оба процесса являются поставщиками как энергетических эквивалентов (АТФ, НАДФ-Н), так и метаболитов. С химической точки зрения дыхание — это медленное окисление. При окислительно-восстановительных реакциях происходит перенос водорода или электрона от донора ДН2 (который окисляется) к акцептору А (который восстанавливается): ДН2 +А ->Д + АН2.

Для того чтобы судить о направлении движения электронов между какими-либо двумя веществами, вводится понятие стандартного восстановительного потенциала (Е0) — это мера электронного давления. За нуль потенциала условно принят восстановительный потенциал реакции H2 —> 2Н+ + 2е. Чем более отрицательна величина восстановительного потенциала, тем больше способность данного вещества отдавать электроны (окисляться) или служить восстановителем.

В создании современных представлений о биологическом окислении большое значение имели работы двух крупнейших русских ученых — В.И. Палладина и А.Н. Баха.

Ферменты, участвующие в процессе дыхания, можно разделить на несколько функциональных групп:

  • оксидоредуктазы (дегидрогеназы, оксидазы);
  • изомеразы;
  • карбоксилазы;
  • трансферазы;
  • оксигеназы.

Изомеразы, карбоксилазы, трансферазы и некоторые другие ферменты не участвуют непосредственно в окислительных реакциях, но они преобразуют окисляемый субстрат таким образом, что он становится более «удобным» для окислительных ферментов. Основную функциональную группу ферментов дыхания — оксидоредуктазы — традиционно делят на дегидрогеназы, активирующие водород субстрата, и оксидазы, активирующие молекулярный кислород.

Источник

Оцените статью