Построение дерева решений предприятия

8.10. Метод «дерево решений»

Для анализа рисков инновационных проектов часто применяют метод дерева решений. Он предполагает, что у проекта существует несколько вариантов развития. Каждое решение, принимаемое по проекту, определяет один из сценариев его дальнейшего развития. При помощи дерева решений решаются задачи классификации и прогнозирования. Дерево решений – это схематическое представление проблемы принятия решений. Ветви дерева решений представляют собой различные события (решения), а его вершины – ключевые состояния, в которых возникает необходимость выбора. Чаще всего дерево решений является нисходящим, т. е. строится сверху вниз. Выделяют следующие этапы построения дерева решений:

  1. Первоначально обозначают ключевую проблему. Это будет вершина дерева.
  2. Для каждого момента определяют все возможные варианты дальнейших событий, которые могут оказать влияние на ключевую проблему. Это будут исходящие от вершины дуги дерева.
  3. Обозначают время наступления событий.
  4. Каждой дуге прописывают денежную и вероятностную характеристики.
  5. Проводят анализ полученных результатов.

Основа наиболее простой структуры дерева решений – ответы на вопросы «да» и «нет». Пример 1. Рассмотрим пример дерева решений, задача которого – ответить на вопрос «Пойти ли гулять?». Чтобы решить эту задачу, необходимо ответить на ряд вопросов, которые находятся в узлах дерева (рис. 8.1). Вершина дерева «На улице солнечно» является узлом проверки. Если на этот вопрос получен положительный ответ, то переходим к левой ветви дерева, если отрицательный – то к правой. Движение продолжается до тех пор, пока не будет получен окончательный ответ. Рис. 8.1. Дерево решений «пойти ли гулять» Для каждой дуги дерева могут быть определены числовые характеристики, например величина прибыли по проекту и вероятность ее получения. В этом случае оно помогает учесть все возможные варианты действия и соотнести с ними финансовые результаты. Для формулирования сценариев развития проекта необходимо располагать достоверной информацией с учетом вероятности и времени наступления событий. Затем переходят к сравнению альтернатив. Пример 2. Компания «Конфетти» в настоящее время выпускает плитки молочного шоколада. Директор по развитию считает, что на рынке повысился спрос на молочный шоколад с наполнителями. Перед компанией стоит вопрос: переходить ли на производство молочного шоколада с наполнителем или не стоит этого делать? Если производить шоколад обоих типов, то потребуется увеличить производственные мощности. Информация об ожидаемых выигрышах и вероятности событий в случае того или иного решения представлена на дереве решений (рис. 8.2). Используя дерево решений, руководитель находит наиболее предпочтительное решение – увеличить производственные мощности. Это обусловлено ожидаемой прибылью – 2 млн руб., которая превышает прибыль 1 млн руб. при отказе от такого наращивания, если в точке «а» будет низкий спрос. Руководитель, двигаясь к первой точке принятия решения, рассчитывает предполагаемую прибыль в случае альтернативных действий. Рис. 8.2. Дерево решений «какой шоколад производить» Для производства только молочного шоколада с наполнителем она составит 4,4 млн руб. (5 × 0,8 + 0,2 × 2). Аналогично рассчитывается ожидаемое значение для варианта выпуска только молочного шоколада без наполнителя, которое равно всего 2,55. Таким образом, наращивание производственных мощностей является наиболее желательным решением и приносит наибольший выигрыш. Пример 3. Руководителю отдела нужно принять решение относительно закупки станков. Второй станок более экономичный, но и в то же время более дорогой и требует больших накладных расходов (рис. 8.3). Руководителю нужно выбрать тот станок, который обеспечит максимизацию прибыли.

Читайте также:  Сколько растет груша дерево
Оборудование Постоянные расходы Операционный расход на единицу техники
Станок 1 500 000 670
Станок 2 700 000 940

Рис. 8.3. Дерево решений Руководитель оценивает вероятность спроса на продукцию, производимую на станках:

  • 2 000 ед. с вероятностью 0,4;
  • 3 000 ед. с вероятностью 0,6.

Станок 1: 840 000 × 0,4 + 1 510 000 × 0,6 = 1 242 000. Станок 2: 1 180 000 × 0,4 + 2 120 000 × 0,6 = 1 744 000. Таким образом, приобретение второго станка более экономично. Недостатками дерева решений является ограниченное число вариантов решения проблемы. В процессе построения дерева решений необходимо обращать внимание на его размер. Оно не должно быть слишком перегруженным, т. к. это уменьшает способность к обобщению и способность давать верные ответы.

Источник

Как увидеть лес за деревьями: что такое Decision Tree и зачем это нужно в Big Data

Big Data, Большие данные, Machine Learning, машинное обучение, системный анализ, Data Mining, предиктивная аналитика

Продолжая насыщать курс Аналитика больших данных для руководителей важными понятиями системного анализа, сегодня мы рассмотрим, что такое дерево решений (Decision Tree). А также расскажем, как этот метод Data Mining и предиктивной аналитики используется в машинном обучении, экономике, менеджменте, бизнес-анализе и аналитике больших данных.

Как растут деревья решений: базовые основы

Начнем с определения: дерево решений – это математическая модель в виде графа, которая отображает точки принятия решений, предшествующие им события и последствия. Этот метод Data Mining широко используется в машинном обучении, позволяя решать задачи классификации и регрессии [1].

Аналитические модели в виде деревьев решений более вербализуемы, интерпретируемы и понятны человеку, чем другие методы Machine Learning, например, нейронные сети. Дополнительное достоинство Decision Tree – это быстрота за счет отсутствия этапа подготовки данных (Data Preparation), поскольку не нужно очищать и нормализовать датасет [2].

Читайте также:  Балкон в частном доме на втором этаже из дерева

В бизнес-анализе, менеджменте и экономике Decision Tree – это отличный инструмент для наглядного отображения всех возможных альтернатив (сценариев), прогнозирования будущих событий, а также оценки их потенциальной выгоды и рисков. Для этого дерево решений представляют в виде графической схемы, чтобы его проще воспринимать и анализировать. Данный граф состоит из следующих элементов [3]:

Decision Tree,системный анализ, аналитика

  • вершины, от которых возможно несколько вариантов, называют узлами. Они показывают возможные ситуации (точки принятия решений);
  • конечные узлы (листья) представляют результат (значение целевой функции);
  • ребра (ветви), соединяющие узлы, описывают вероятности развития событий по этому сценарию.

Обычно многоузловые деревья решений строятся с помощью специального программного обеспечения. Но граф с ограниченным числом вершин можно построить в табличном редакторе или даже вручную. Как это сделать самостоятельно, мы рассмотрим далее на простом примере из управленческой практики.

Строим дерево решений на примере обучения Big Data

Итак, проанализируем кейс построения дерева решений на примере расчета выгоды от обучения сотрудников новой Big Data технологии с целью быстрого выпуска продукта ценой X. При этом возможны следующие альтернативные сценарии:

  • поручить каждому сотруднику самостоятельно освоить нужные подходы, фреймворки и языки программирования в свободное от работы время. Фактические затраты на реализацию такого решения равны нулю, а вероятность успешного освоения технологии для быстрого выпуска продукта оценивается на уровне 30%.
  • выделить w рабочих дней на самостоятельное обучение каждого сотрудника на его рабочем месте. Фактические затраты на реализацию такого решения составляют стоимость рабочего дня каждого сотрудника в день (Z), умноженное на количество дней (w) и число сотрудников (k). Успех ожидается в 50% случаев.
  • организовать корпоративное обучение всех сотрудников в специализированном учебном центре в течении n дней. Затраты на обучения составят совокупную стоимость курсов (Y), а также цену рабочего дня каждого сотрудника в день (Z)*количество дней (n)*число сотрудников (k). При этом сотрудники освоят технологию с вероятностью 98% за n дней (n
Читайте также:  Мастер класс изготовлению дерева счастья

Затраты на реализацию решения

Вероятность успешного освоения технологии для быстрого выпуска продукта ценой X

Самостоятельное обучение каждого сотрудника вне работы

Самостоятельное обучение каждого сотрудника на работе

стоимость рабочего дня каждого сотрудника в день (Z)*количество дней (w)*число сотрудников (k)

Организованные курсы для всех сотрудников в учебном центре

цена обучения (Y) + стоимость рабочего дня каждого сотрудника в день (Z)*количество дней (n)*число сотрудников (k)

Сравнив в абсолютных числах выражения 0,3X, (X*0,5 – Z*w*k) и (X*0,98 – Y – Z*n*k), можно выбрать наиболее выгодный вариант. Таким образом, дерево решений позволяет количественно оценить риски, затраты и выгоды возможных альтернатив и выработать оптимальную управленческую стратегию. Не случайно профессиональный стандарт бизнес-аналитика, руководство BABOK, о котором мы рассказывали здесь, включило дерево решений в набор наиболее часто используемых техник [4]. В следующей статье мы расскажем, как деревья решений и другие методы интеллектуального анализа данных реализуются в новом тренде аналитики больших данных — Augmented Analytics.

Источник

Оцените статью