1. Дигибридное скрещивание. Третий закон Менделя
Скрещивание, при котором родительские особи отличаются по двум парам аллелей, называется дигибридным .
Гибриды, гетерозиготные по двум генам, называют дигетерозиготными . Их генотип AaBb .
Закономерности наследования нескольких пар признаков изучал Г. Мендель. Для дигибридного скрещивания он использовал чистые линии гороха, различающиеся по двум парам признаков: жёлтые гладкие семена и зелёные морщинистые.
У всех гибридов первого поколения были жёлтые гладкие семена, т. е. наблюдалось единообразие первого поколения.
Гены, определяющие развитие разных пар признаков, называются неаллельными и обозначаются разными буквами латинского алфавита.
Обозначим аллели жёлтой окраски A , зелёной окраски — a , гладкой формы — B , морщинистой формы — b .
Родительские растения в этом случае имеют генотипы AABB и aabb , а гибриды F 1 — AaBb , т. е. являются дигетерозиготными.
При этом получились четыре фенотипические группы в следующем соотношении: \(630\) жёлтых гладких, \(202\) жёлтых морщинистых, \(216\) зелёных гладких, \(64\) зелёных морщинистых семени.
Из \(1112\) семян Мендель получил \(846\) гладких и \(266\) морщинистых, \(832\) жёлтых и \(280\) зелёных. По каждой паре признаков наблюдается расщепление \(3:1\). Такое же расщепление наблюдается при моногибридном скрещивании.
Можно сделать вывод, что в этом случае происходят два процесса моногибридного скрещивания, которые никак не влияют друг на друга. Наследование пары признаков не зависит от наследования других пар. В этом сущность третьего закона Менделя — закона независимого наследования признаков .
При скрещивании особей, которые различаются по нескольким парам признаков, происходит независимое наследование и в потомстве наблюдаются все возможные комбинации этих признаков.
Третий закон Менделя выполняется только для генов, локализованных в разных парах гомологичных хромосом.
Источник
Законы Менделя
В предыдущей статье мы познакомились с фундаментальными понятиями и методами генетики. Настало время их применить при изучении нового раздела — Менделевской генетики, основанной на законах, открытых Грегором Менделем.
- Использовал гибридологический метод генетики, подвергая скрещиванию растения гороха с четко различающимися признаками: желтый — зеленый цвет семян, гладкая — морщинистая форма семян
- Моногибридным — в случае если скрещиваемые особи отличаются только по одному исследуемому признаку (цвет семян)
- Дигибридным — если скрещиваемые особи отличаются по двум различным признакам (цвет и форма семян)
В схеме решения генетическое задачи есть некоторые обозначения: ♀ — женский организм, ♂ — мужской организм, P — родительские организмы, F1 — гибриды первого поколения, F2 — гибриды второго поколения. Вероятно, имеет смысл сохранить картинку ниже себе на гаджет, если вы только приступаете к изучению генетики 😉
Спешу сообщить вам, что браки между людьми (в отличие от насильственного скрещивания гороха) происходят только по любви и взаимному согласию! Поэтому в задачах, где речь идет о людях, не следует ставить знак скрещивания «×» между родительскими особями. В таком случае ставьте знак «→» — «стрелу Амура», чтобы привести в восхищение экзаменатора 🙂
Первый закон Менделя — закон единообразия
С него часто начинаются генетические задачи (в качестве первого скрещивания). Этот закон гласит о том, что при скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения будут единообразны по данным признакам.
Этот закон основан на варианте взаимодействия между генами — полном доминировании. При таком варианте один ген — доминантный, полностью подавляет другой ген — рецессивный. В эксперименте, который мы только что изучили, Мендель скрещивал чистые линии гороха с желтыми (АА) и зелеными (aa) семенами, в результате все потомство имело желтый цвет семян (Aa) — было единообразно.
Анализирующее скрещивание
Часто генотип особи не изучен и представляет загадку. Как быть генетику в данном случае? Иногда проще всего применить анализирующее скрещивание — скрещивание гибридной особи (у которой не известен генотип) с гомозиготой по рецессивному признаку.
Анализируя полученное потомство, можно сделать вывод о генотипе гибридной особи.
В рассмотренном случае, если генотип изучаемой особи содержит два доминантных гена (AA) — то в потомстве не может проявиться рецессивного признака, так как все потомство будет единообразно (Aa). Если изучаемая особь содержит рецессивный ген (Aа), то половина потомства будет его иметь (aa). В результате становится известен генотип гибридной особи.
Неполное доминирование
Помимо полного доминирования, существует неполное доминирование, которое характерно для некоторых генов. Известным примером неполного доминирования является наследование окраски лепестков у растения ночная красавица. В этом случае гены не полностью подавляют друг друга — проявляется промежуточный признак.
Обратите внимание, потомство F1 получилось также единообразным (возможен только один вариант — Aa), но фенотипически у гетерозиготы признак будет проявляться как промежуточное состояние (AA — красный, aa — белый, Aa — розовый). Это можно сравнить с палитрой художника: представьте, как смешиваются красный и белый цвета — получается розовый.
Второй закон Менделя — закон расщепления
«При скрещивании гетерозиготных гибридов (Aa) первого поколения F1 во втором поколении F2 наблюдается расщепление по данному признаку: по генотипу 1 : 2 : 1, по фенотипу 3 : 1″
Скрещивая между собой гибриды первого поколения (Aa) Мендель обнаружил, что в потомстве особей с доминантным признаком (AA, Aa — желтый цвет семян) примерно в 3 раза больше, чем особей с рецессивным (aa).
Искренне желаю того, чтобы вы научились сами определять расщепление по генотипу и фенотипу. Это сделать несложно: когда речь идет о генотипе, обращайте внимание только на гены (буквы), то есть, если перед вами особи AA, Aa, Aa, aa, — следует брать генотипы по очереди и складывать количество одинаковых генотипов. Именно в результате таких действий соотношение по генотипу получается 1:2:1.
Если перед вами стоит задача посчитать соотношение по фенотипу, то вообще не смотрите на гены — это только запутает! Следует учитывать лишь проявление признака. В потомстве получилось 3 растения с желтым цветом семян и 1 с зеленым, следовательно, расщепление по фенотипу 3:1.
Третий закон Менделя — закон независимого наследования
В нем речь идет о дигибридном скрещивании, то есть мы исследуем не один, а два признака у особей (к примеру, цвет семян и форма семян). Каждый ген имеет два аллеля, поэтому пусть вас не удивляют генотипы AaBb 🙂 Важно заметить, что речь в данном законе идет о генах, которые расположены в разных хромосомах.
Запомните III закон Менделя так: «При скрещивании особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга, комбинируясь друг с другом во всех возможных сочетаниях.
Комбинации генов отражаются в образовании гамет. В соответствии с правилом, изложенным выше, дигетерозигота AaBb образует 4 типа гамет: AB, ab, Ab, aB. Повторюсь — это только если гены находятся в разных хромосомах. Если они находятся в одной, как при сцепленном наследовании, то все протекает по-другому, но это уже предмет изучения следующей статьи.
Каждая особь AaBb образует 4 типа гамет, возможных гибридов второго поколения получается 16. При таком обилии гамет и большом количестве потомков, разумнее использовать решетку Пеннета, в которой вдоль одной стороны квадрата расположены мужские гаметы, а вдоль другой — женские. Это помогает более наглядно представить генотипы, получающиеся в результате скрещивания.
- Желтые гладкие — 9
- Желтые морщинистые — 3
- Зеленые гладкие — 3
- Зеленые морщинистые — 1
Очевидно, что расщепление по фенотипу среди гибридов второго поколения составляет: 9:3:3:1.
Пример решения генетической задачи №1
Доминантный ген отвечает за развитие у человека нормальных глазных яблок. Рецессивный ген приводит к почти полному отсутствию глазных яблок (анофтальмия). Гетерозиготы имеют глазное яблоко малых размеров (микрофтальмия). Какое строение глазных яблок будет характерно для потомства, если оба родителя страдают микрофтальмией?
Обратите внимание на то, что доминирование генов неполное: человек с генотипом Aa будет иметь промежуточное значение признака — микрофтальмию. Поскольку доминирование неполное, то расщепление по генотипу и фенотипу совпадает, что типично для неполного доминирования.
В данной задаче только ¼ потомства (25%) будет иметь нормальные глазные яблоки. ½ часть потомства (50%) будет иметь глазное яблоко малых размеров — микрофтальмию, и оставшаяся ¼ (25%) будут слепыми с почти полным отсутствием глазных яблок (анофтальмией).
Не забывайте, что генетика, по сути, теория вероятности. Очевидно, что в жизни в такой семье может быть рождено 4 подряд здоровых ребенка с нормальными глазными яблоками, или же наоборот — 4 слепых ребенка. Может быть как угодно, но мы с вами должны научиться говорить о «наибольшей вероятности», в соответствии с которой с вероятностью 50% в этой семье будет рожден ребенок с микрофтальмией.
Пример решения генетической задачи №2
Полидактилия и отсутствие малых коренных зубов передаются как аутосомно-доминантные признаки. Гены, отвечающие за развитие этих признаков, расположены в разных парах гомологичных хромосом. Какова вероятность рождения детей без аномалий в семье, где оба родителя страдают обеими болезнями и гетерозиготны по этим парам генов.
Я хочу сразу навести вас на мысль о III законе Менделя (закон независимого наследования), который скрыт в фразе » Гены . расположены в разных парах гомологичных хромосом». Вы увидите в дальнейшем, насколько ценна эта информация. Также заметьте, что речь в этой задаче идет о аутосомных генах (расположенных вне половых хромосом). Аутосомно-доминантный тип наследования означает, что болезнь проявляется, если ген в доминантном состоянии: AA, Aa — болен.
В данном случае мы построим решетку Пеннета, которая сделает генотипы потомства более наглядными. Вы видите, что на потомстве буквально нет ни одного живого места: почти все 16 возможных потомков больны либо одним, либо другим заболеванием, кроме одного, aabb. Вероятность рождения такого ребенка очень небольшая 1/16 = 6.25%.
Пример решения генетической задачи №3
У голубоглазой близорукой женщины от брака с кареглазым мужчиной с нормальным зрением родилась кареглазая близорукая девочка и голубоглазый мальчик с нормальным зрением. Ген близорукости (A) доминантен по отношению к гену нормального зрения (a), а ген кареглазости (D) доминирует над геном голубоглазости (d). Какова вероятность рождения в этой семье нормального кареглазого ребенка?
Первый этап решения задачи очень важен. Мы учли описания генотипов родителей и, тем не менее, белые пятна остались. Мы не знаем гетерозиготна (Aa) или гомозиготная (aa) женщина по гену близорукости. Такая же ситуация и с мужчиной, мы не можем точно сказать, гомозиготен (DD) он или гетерозиготен (Dd) по гену кареглазости.
Разрешение наших сомнений лежит в генотипе потомка, про которого нам рассказали: «голубоглазый мальчик с нормальным зрением» с генотипом aadd. Одну хромосому ребенок всегда получает от матери, а другу от отца. Выходит, что такого генотипа не могло бы сформироваться, если бы не было гена a — от матери, и гена d — от отца. Следовательно, отец и мать гетерозиготны.
Теперь мы можем точно сказать, что вероятность рождения в этой семье нормального кареглазого ребенка составляет ¼ или 25%, его генотип — Ddaa.
Аутосомно-доминантный тип наследования
Я не забыл о том, что по ходу изучения генетики вас надо научить видеть различные варианты наследования на генеалогическом древе (родословной) =) Из предыдущей статьи мы узнали о том, как выглядит и чем характеризуется аутосомно-рецессивный тип наследования, сейчас поговорим об аутосомно-доминантном, с которым мы столкнулись в задачах выше.
- Болезнь проявляется в каждом поколении семьи (передача по вертикали)
- Здоровые дети больных родителей имеют здоровых детей
- Мальчики и девочки болеют одинаково часто
- Соотношение больных и здоровых 1:1
© Беллевич Юрий Сергеевич 2018-2023
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Источник