Пример дерева дискретная математика

Деревья

Существует один простой и важный тип графов, которому разные авторы дали одинаковое название, это- деревья. Деревья важны не только потому, что они находят приложения в различных областях знания, но и в силу особого положения их в самой теории графов. Последнее вызвано предельной простотой строения деревьев. Часто при решении какой-либо задачи о графах ее сначала исследуют на деревьях. Примером служит гипотеза Улама, приведенная в гл. 2.

Ниже дано несколько определений дерева. Сначала в геометрических терминах изучается понятие центральности дерева. Затем рассматриваются деревья, естественным образом связанные с произвольным связным графом, именно деревья блоков и точек сочленения. Наконец, будет показано, как каждый остов графа G приводит к набору его независимых циклов, и обратно, для каждого ко-остова можно построить набор независимых коциклов.

Описание деревьев

Граф называется ациклическим, если в нем нет циклов.Дерево— это связный ациклический граф. Каждый граф, не содержащий циклов, называетсялесом. Таким образом, компонентами леса являются деревья. Существуют 23 различных дерева с восемью вершинами. Известны и другие определения дерева. В теореме 4.1 отражены некоторые из них.

Теорема.Для графа G следующие утверждения эквивалентны:

(2) любые две вершины в G соединены единственной простой цепью;

(3) G — связный граф и p=q+1;

(4) G — ациклический граф и p=q+1;

(5) G — ациклический граф, и если любую пару несмежных вершин

соединить ребром х, то в графе G + x будет точно один простой цикл;

(6) G — связный граф, отличный от Кр для р>=З, и если любую пару несмежных вершин соединить ребром х, то в графе G + x будет точно один простой цикл;

(7) G — граф, отличный от КзUК1 и КзUК2, p=q+1, и если любую пару несмежных вершин соединить ребром х, то в графе G + x будетточно один простой цикл.

Доказательство.(1) влечет (2). Поскольку G — связный граф, то любые две его вершины соединены простой цепью. Пусть Р1 и P2— две различные простые цепи, соединяющие вершины и и v, и пусть w — первая вершина, принадлежащая Р2 (при переходе по P1 из и в v), такая, что w принадлежит и P1 и Р2, но вершина, предшествующая ей в P1, не принадлежит Р2. Если w’ — следующая за w вершина в Р1 принадлежащая также Р2, то сегменты (части) цепей P1 и Р2, находящиеся между вершинами w и w’, образуют простой цикл в графе G. Поэтому, если G — ациклический граф, то между любыми двумя его вершинами существует самое большее одна простая цепь.

Читайте также:  Одним ударом дерево плагин

(2) влечет (3). Ясно, что граф G — связный. Соотношение р =q+1 докажем по индукции. Утверждение очевидно для связных графов с одной и двумя вершинами. Предположим, что оно верно для графов, имеющих меньше р вершин. Если же граф G имеет р вершин, то удаление из него любого ребра делает граф G несвязным в силу единственности простых цепей; более того, получаемый граф будет иметь в точности две компоненты. По предположению индукции в каждой компоненте число вершин на единицу больше числа ребер. Таким образом, общее число ребер в графе G должно равняться р — 1.

(3) влечет (4). Предположим, что в графе G есть простой цикл длины п. Этот цикл содержит nвершин иnребер, а для любой из р —nвершин, не принадлежащих циклу, существует инцидентное ей ребро, которое лежит на геодезической, идущей от некоторой вершины цикла. Все такие ребра попарно различны; отсюда q>p, т. е. пришли к противоречию.

(4) влечет (5). Так как G — ациклический граф, то каждая его компонента является деревом. Если всего k компонент, то, поскольку в каждой из них число вершин на единицу больше числа ребер, имеем p = q + k. В нашем случае должно быть k=1, так что G — связный граф. Таким образом, G — дерево и любые две его вершины соединяет простая единственная цепь. Если к дереву G добавить ребро uv, то ребро вместе с единственной простой цепью, соединяющей вершины uи v, образует простой цикл, который также единствен в силу единственности простой цепи.

(5) влечет (6). Поскольку каждый полный граф КР для р>3 содержит простой цикл, граф G не может быть одним из этих графов. Граф G должен быть связным, так как в ином случае можно было бы добавить ребро х, соединяющее две вершины из разных компонент графа G, и граф G + x был бы ациклическим.

(6) влечет (7). Докажем, что любые две вершины графа G соединены единственной простой цепью, а тогда, поскольку (2) влечет (3), получим p=q+1. Ясно, что в графе G любые две вершины соединены простой цепью. Если какая-то пара вершин графа G соединена двумя простыми цепями, то из доказательства того, что (1) влечет (2), следует наличие у графа G простого цикла Z. В Z не может быть более трех вершин, так как иначе, соединив ребром х две несмежные вершины в Z, получим граф G + x, имеющий более одного простого цикла (если же в Z нет несмежных вершин, то в графе G более одного цикла). Таким образом, цикл Z есть К.3, и он должен быть собственным подграфом графа G, поскольку по предположению G не является полным графом КР с р>3. Так как G — связный граф, то можно предположить, что в G есть другая вершина, смежная с некоторой вершиной подграфа К3. Тогда ясно, что если к графу G добавлять ребро, то его можно добавить так, чтобы в графе G + x образовались, по крайней мере два простых цикла. Если больше нельзя добавить новых ребер, не нарушая для графа G второго условия из (6), то G есть КР с р>3 вопреки предположению.

Читайте также:  Морозильная камера цвет дерево

(7) влечет (1). Если граф G имеет простой цикл, то этот цикл должен быть треугольником, являющимся компонентой графа G, что было показано в предыдущем абзаце. В этой компоненте соответственно три вершины и три ребра. Все остальные компоненты графа G должны быть деревьями, но для того, чтобы выполнялось соотношение p = q + l, должно быть не более одной компоненты, отличной от указанного треугольника. Если это дерево содержит простую цепь длины 2, то к графу G можно так добавить ребро х, чтобы образовать в графе G + x два простых цикла. Следовательно, этим деревом может быть или К1 или K2. Значит, граф G — или Кз U K1или К3U К2, а эти графы мы исключили из рассмотрения. Таким образом, G- ациклический граф. Но если G — ациклический граф и p=q+1, то G связен, поскольку (4) влечет (5), а (5) влечет (6). Итак,

G -дерево, и теорема доказана.

Так как для нетривиального дерева di = 2q=2(p— 1), то в дереве должно быть, по крайней мере, две вершины со степенями, меньшими 2.

Следствие.В любом нетривиальном дереве имеется, по крайней мере, две висячие вершины.

Этот результат также следует из теоремы.

Источник

Введение в деревья

Дерево – это дискретная структура, которая представляет иерархические отношения между отдельными элементами или узлами. Дерево, в котором родитель имеет не более двух детей, называется бинарным деревом.

Дерево и его свойства

Определение – Дерево – это связный ациклический неориентированный граф. Между каждой парой вершин в G существует уникальный путь. Дерево с N числом вершин содержит ( N − 1 ) число ребер. Вершина, которая имеет 0 градусов, называется корнем дерева. Вершина, имеющая 1 градус, называется листовым узлом дерева, а степень внутреннего узла составляет не менее 2.

Пример . Ниже приведен пример дерева.

дерево

Центры и Би-Центры Дерева

Центр дерева – это вершина с минимальным эксцентриситетом. Эксцентриситет вершины X в дереве G – это максимальное расстояние между вершиной X и любой другой вершиной дерева. Максимальный эксцентриситет – диаметр дерева. Если у дерева есть только один центр, оно называется Центральным деревом, а если у дерева есть только несколько центров, оно называется Би-центральным деревом. Каждое дерево является либо центральным, либо двухцентральным.

Алгоритм нахождения центров и бицентров дерева

Шаг 1 – Удалите все вершины степени 1 из данного дерева, а также удалите их падающие ребра.

Читайте также:  Межкомнатные двери светлого дерева

Шаг 2 – Повторяйте шаг 1, пока не останется одна вершина или две вершины, соединенные ребром. Если осталась одна вершина, то это центр дерева, а если осталось две вершины, соединенные ребром, то это бицентр дерева.

Узнайте центр / би-центр следующего дерева –

Дерево 1

Сначала мы удалим все вершины степени 1, а также удалим их падающие ребра и получим следующее дерево:

Tree1 Solution

Опять же, мы удалим все вершины степени 1, а также удалим их инцидентные ребра и получим следующее дерево:

Решение Tree 1 Удаление вершины

Наконец, мы получили одну вершину «c» и остановили алгоритм. Поскольку существует единственная вершина, у этого дерева есть один центр ‘c’, и дерево является центральным деревом.

Узнайте центр / би-центр следующего дерева –

Дерево2

Сначала мы удалим все вершины степени 1, а также удалим их падающие ребра и получим следующее дерево:

Tree 2 Solution

Опять же, мы удалим все вершины степени 1, а также удалим их инцидентные ребра и получим следующее дерево:

Решение Tree 2 Удаление вершины

Наконец, у нас осталось две вершины «c» и «d», поэтому мы останавливаем алгоритм. Поскольку оставлены две вершины, соединенные ребром, это дерево имеет двухцентровый «cd», а дерево является двухцентровым.

Маркированные деревья

Определение – помеченное дерево – это дерево, вершинам которого присваиваются уникальные номера от 1 до n. Мы можем посчитать такие деревья для малых значений n вручную, чтобы предположить общую формулу. Число помеченных деревьев из n вершин равно n n − 2 . Два помеченных дерева изоморфны, если их графы изоморфны и соответствующие точки двух деревьев имеют одинаковые метки.

пример

Помеченное дерево с двумя вершинамиТри возможных помеченных дерева с тремя вершинами

Немеченые деревья

Определение – немеченое дерево – это дерево, вершинам которого не назначены никакие числа. Число помеченных деревьев с числом вершин n равно $ \ frac <(N + 1)! N! >$ (n- е каталонское число)

пример

Немеченое деревоНемеченое дерево с тремя вершинамиДва возможных немеченых дерева с четырьмя вершинами

Укорененное дерево

Корневое дерево G – это связный ациклический граф со специальным узлом, который называется корнем дерева, и каждое ребро прямо или косвенно происходит от корня. Упорядоченное корневое дерево – это корневое дерево, в котором упорядочены дочерние элементы каждой внутренней вершины. Если каждая внутренняя вершина корневого дерева имеет не более m дочерних элементов, она называется m-арным деревом. Если каждая внутренняя вершина корневого дерева имеет ровно m детей, она называется полным m-арным деревом. Если m = 2 , корневое дерево называется бинарным деревом.

Укорененное дерево

Двоичное дерево поиска

Двоичное дерево поиска – это двоичное дерево, которое удовлетворяет следующему свойству:

  • X в левом поддереве вершины V , V a l u e ( X ) l e V a l u e ( V )
  • Y в правом поддереве вершины V , V a l u e ( Y ) g e V a l u e ( V )

Таким образом, значение всех вершин левого поддерева внутреннего узла V меньше или равно V , а значение всех вершин правого поддерева внутреннего узла V больше или равно V . Количество ссылок от корневого узла к самому глубокому узлу является высотой дерева двоичного поиска.

Источник

Оцените статью