1. Дыхание. Определение. Уравнение. Значение дыхания в жизни растительного организма. Специфика дыхания у растений
Образующиеся в ходе фотосинтеза сахара и другие органические соединения используются клетками растительного организма в качестве питательных веществ. Клетки незеленых частей и все клетки растения в темноте питаются веществами углеводной природы гетеротрофно и в этом принципиально не отличаются от животных клеток. Важнейшим этапом питания органическими веществами на клеточном уровне является процесс дыхания.
Клеточное дыхание — это окислительный, с участием кислорода распад органических питательных веществ, сопровождающийся образованием химически активных метаболитов и освобождением энергии, которые используются клетками для процессов жизнедеятельности.
Научные основы учения о роли кислорода в дыхании были заложены трудами A. Л. Лавуазье. В 1774 г. кислород независимо открыли Пристли и Шееле, а Лавуазье дал название этому элементу. Изучая одновременно процесс дыхания животных и горение, Лавуазье в 1773 — 1783 гг. пришел к выводу. что при дыхании, как и при горении, поглощается 02 и образуется С02, причем в том и другом случаях выделяется теплота. На основании своих опытов он заключил, что процесс горения состоит в присоединении кислорода к субстрату и что дыхание есть медленно текущее горение питательных веществ в живом организме.
Я. Ингенхауз в 1778—1780 гг. показал, что зеленые растения в темноте, а незеленые части растений и в темноте, и на свету поглощают кислород и выделяют С02 так же, как животные. Основателем учения о дыхании растений считают Н. Т. Соссюра. В 1797—1804 гг., впервые широко использовав количественный анализ, он установил, что в темноте растения поглощают столько же кислорода, сколько выделяется С02, т.е. соотношение С02/02, как правило, равно 1. При этом одновременно с С02 образуется и вода. Мнение Соссюра о том. что описанный им газообмен у растений является процессом дыхания и что этот процесс обеспечивает растительный организм энергией, долгое время не признавалось. Утверждалось, что в ночное время растения выделяют тот С02, который не был использован при фотосинтезе, и что этот С02 не имеет отношения к дыханию.
Однако постепенно накапливалось все больше данных о том, что дыхание животных и растений протекает однотипно, несмотря на отсутствие у растений специальных дыхательных органов, причем основным субстратом дыхания служат сахара. И. П. Бородин (1876) в серии точных опытов установил, что интенсивность дыхания листоносных побегов в темноте в первую очередь зависит от количества углеводов, накопленных ими на свету.
Во второй половине XIX в. в результате изучения дыхания у растительных и животных объектов общее уравнение этого процесса приняло следующий вид:
ЗНАЧЕНИЕ ДЫХАНИЯ В ЖИЗНИ РАСТЕНИЯ
Дыхание — один из центральных процессов обмена веществ растительного организма. Выделяющаяся при дыхании энергия тратится как на процессы роста, так и нa поддержание в активном состоянии уже закончивших рост органов растения. Вместе с тем значение дыхания не ограничивается тем, что это процесс, поставляющий энергию. Дыхание, подобно фотосинтезу, сложный окислительно _ восстановительный процесc, идущий через ряд этапов. На его промежуточных стадиях образуются органические соединения, которые затем используются в различных метаболических реакциях. К промежуточным соединениям относят органические кислоты и пентозы образующиеся при разных путях дыхательного распада. Таким образом, процесс дыхания — источник многих метаболитов. Несмотря на то что процесс дыхания в суммарном виде противоположен фотосинтезу, в некоторых случаях они могут дополнять друг друга. Оба процесса являются поставщиками как энергетических эквивалентов (АТФ, НАДФ-Н), так и метаболитов. Как видно из суммарного уравнения, в процессе дыхания образуется также вода. Эта вода в крайних условиях обезвоживания может быть использована растением и предохранить его от гибели. В некоторых случаях, когда энергия дыхания выделяется в виде тепла, дыхание ведет к бесполезной потере сухого вещества. В этой связи при рассмотрении процесса дыхания надо помнить, что не всегда усиление процесса дыхания является полезным для растительного организма.
Источник
1. Дыхание у растений
Дыхание — это процесс разложения органических веществ в живых клетках под действием кислорода. В результате дыхания образуется углекислый газ и вода, а также происходит выделение энергии, необходимой для жизнедеятельности.
При дыхании растения, как и другие живые существа, поглощают кислород из воздуха. А ещё они используют кислород, образующийся в их клетках при фотосинтезе.
В светлое время суток в эпидермисе листьев и молодых стеблей открыты устьица, кислород из воздуха поступает к клеткам через них.
В тёмное время устьица закрываются. Клетки растений используют кислород, который образовался при фотосинтезе и содержится в межклетниках.
При дыхании происходит распад органических веществ на воду и углекислый газ . А энергия солнечного света , запасённая растениями в ходе фотосинтеза в органических веществах, выделяется . Растение может использовать эту энергию на жизненные процессы: на транспорт веществ, размножение, рост и т. д.
Образовавшийся в клетках углекислый газ выходит наружу через устьица и чечевички, или удаляется через оболочки клеток (в корнях).
Процесс дыхания противоположен процессу фотосинтеза. Дыхание является обязательным условием существования растений, так как оно обеспечивает растительный организм энергией, необходимой для жизнедеятельности.
Источник
1. Химическая сущность и значение дыхания в жизни растений.
Дыхание – это процесс биологического окисления продуктов растений, в первую очередь – углеводов, до простейших неорганических соединений, СО2 и Н2О, сопровождаемый выделением энергии.
В качестве дыхательного материала (субстрата) в растении, кроме углеводов, могут использоваться жиры (при прорастании семян масличных культур), белки и аминокислоты (при прорастании семян бобовых культур), органические кислоты (в листьях и побегах суккулентных растений). Но в клетках большинства растений, основным дыхательным материалом являются углеводы. Во второй половине 19 века в результате изучения дыхания, общее уравнение химических превращений этого процесса приняло следующий вид:
Из представленного уравнения видно, что в процессе дыхания происходит:
- Уменьшение массы живого объекта.
- Изменение газового состава окружающей среды, вследствие поглощения О2 и выделения СО2.
- Выделение влаги.
- Выделение энергии.
Дыхание, как и фотосинтез, является сложным ферментным окислительно-восстановительным процессом, идущим через ряд этапов. Что из этого следует? Благодаря этому, химическая энергия органических соединений высвобождается не вся сразу, а постепенно, небольшими порциями, которые могут тут же расходоваться в различных процессах жизнедеятельности. В этом дыхание отличается, например, от горения, что является также окислительным процессом.
В процессах жизнедеятельности используется только та часть энергии, которая аккумулируется в АТФ. Часть энергии (до 50%) выделяется в виде тепла.
АТФ является источником энергии для таких процессов, как:
- Процессы роста.
- Реакций синтеза.
- Клеточное деление.
- Активный транспорт ЭМП.
- Механическая работа.
- Осмос.
- Биолюминисценция.
В этом состоит основное физиологическое значение дыхания.
Часть энергии в виде тепла используется для поддержания определенной температуры в клетках. Часть рассеивается в виде тепла и для растений является бесполезной, а иногда и вредной (самосогревание влажных семян и их порча).
Наряду с высвобождением энергии на промежуточных этапах процесса дыхания, образуются органические соединения (сахарофосфороорганические кислоты), которые используются в синтетических реакциях образования белков, жиров, углеводов и других соединений, т.е. дыхание обеспечивает взаимосвязь всех процессов обмена веществ в клетке. В этом состоит второе значение дыхания. Таким образом, дыхание обеспечивает обмен веществ и энергии, лежащей в основе всех физиологических и биохимических процессов, протекающих в каждой главной клетке. Оно, таким образом, является клеточным дыханием и является обязательным условием жизни.
2. Брожение.
В этом случае, когда из-за отсутствия кислорода аэробное дыхание становится невозможным, растение некоторое время может получать энергию в результате брожения органических соединений. Это может происходить в результате затопления, уплотнения почвы. Брожение – это процесс ферментного окисления органических соединений в анаэробных условиях. При брожении органические соединения окисляются лишь частично. В результате происходит накопление богатых энергией конечных продуктов, главным образом, этилового спирта (или молекул уксусной, масляной и других органических кислот). Уравнение брожения:
Энергетический выход брожения уступает энергетическому выходу дыхания, таким образом, для обеспечения себя энергией за счет брожения растение должно израсходовать значительно большее количество гексоз (или других субстратов), чем при аэробном дыхании.
В результате брожения не образуются многие примеси соединений, необходимые клетке. Накапливаются вредные соединения, отравляя растительный организм. Но растения могут значительное время использовать брожение при затоплении.
Источник
69. Значение дыхания в жизни растения.
Дыхание — один из важнейших процессов обмена веществ растительного организма. Выделяющаяся при дыхании энергия тратится как на процессы роста, так и на поддержание в активном состоянии уже закончивших рост органов растения. Вместе с тем значение дыхания не ограничивается тем, что это процесс, поставляющий энергию. Дыхание, подобно фотосинтезу, сложный окислительно-восстановительный процесс, идущий через ряд этапов. На его промежуточных стадиях образуются органические соединения, которые затем используются в различных метаболических реакциях. К промежуточным соединениям относят органические кислоты и пентозы, образующиеся при разных путях дыхательного распада. Таким образом, процесс дыхания — источник многих метаболитов. Несмотря на то, что процесс дыхания в суммарном виде противоположен фотосинтезу, в некоторых случаях они могут дополнять друг друга. Оба процесса являются поставщиками как энергетических эквивалентов (АТФ, НАДФН), так и метаболитов. Как видно из суммарного уравнения, в процессе дыхания образуется также вода. Эта вода в крайних условиях обезвоживания может использоваться растением и предохранить его от гибели. В некоторых случаях, когда энергия дыхания выделяется в виде тепла, дыхание ведет к бесполезной потере сухого вещества. В этой связи при рассмотрении процесса дыхания надо помнить, что не всегда усиление процесса дыхания является полезным для растительного организма.
Дыхание необходимо для освобождения химической энергии окисляемых субстратов. В реакциях гликолиза (анаэробного этапа дыхания) и дыхательных циклов (цикл ди- и трикарбоновых кислот, пенто-зофосфатный цикл) восстанавливаются коферменты, которые затем окисляются кислородом воздуха в электронтранспортной цепи митохондрий (NADH, FADN2) или используются для синтетических процессов (преимущественно NАDРН).
70. Фотодыхание и его роль.
Фотодыхание — это индуцированное светом поглощение кислорода и выделение СО2, которое наблюдается только в растительных клетках, содержащих хлоропласты. Химизм этого процесса значительно отличается от «темнового» дыхания митохондрий. Первичным продуктом фотодыхания является гликолевая кислота, поэтому такой путь окисления получил название гликолатного. Фотодыхание осуществляется в результате взаимодействия трех органелл — хлоропластов, пероксисом и митохондрий. В основе фотодыхания лежит способность ключевого фермента цикла Кальвина РДФ-карбоксилазы катализировать окислительное расщепление рибулозо-1,5-дифосфата на 3-фосфоглицериновую кислоту и 2-фосфогликолевую кислоту, содержащую два атома углерода. 3-ФГК поступает в цикл Кальвина, а 2-фосфогликолевая кислота подвергается дефосфорилированию с образованием гликолата. Гли-колат из хлоропласта поступает в пероксисому — органеллу овальной формы, окруженную одинарной мембраной. Здесь гликолат под действием гликолатоксидазы окисляется до глиоксилата. Образующаяся при этом перекись водорода расщепляется при участии фермента каталазы. Глиоксилат затем превращается в аминокислоту глицин в результате реакции трансаминирования. В качестве донора аминогруппы функционирует глутаминовая кислота. Глицин транспортируется в митохондрию. Там из двух молекул глицина образуется серии и освобождается СО2 Таким образом, часть углерода, фиксированного в цикле Кальвина, теряется растением. Поэтому при интенсивном фотодыхании продуктивность фотосинтеза снижается.
У некоторых растений фотодыхание или какие-то сопутствующие ему реакции необходимы для того, чтобы жизненный цикл протекал нормально.
Источник