Реализация авл дерева python

girish3 / avl_tree.py

This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters

#import random, math
outputdebug = False
def debug ( msg ):
if outputdebug :
print msg
class Node ():
def __init__ ( self , key ):
self . key = key
self . left = None
self . right = None
class AVLTree ():
def __init__ ( self , * args ):
self . node = None
self . height = — 1
self . balance = 0 ;
if len ( args ) == 1 :
for i in args [ 0 ]:
self . insert ( i )
def height ( self ):
if self . node :
return self . node . height
else :
return 0
def is_leaf ( self ):
return ( self . height == 0 )
def insert ( self , key ):
tree = self . node
newnode = Node ( key )
if tree == None :
self . node = newnode
self . node . left = AVLTree ()
self . node . right = AVLTree ()
debug ( «Inserted key [» + str ( key ) + «]» )
elif key < tree . key :
self . node . left . insert ( key )
elif key > tree . key :
self . node . right . insert ( key )
else :
debug ( «Key [» + str ( key ) + «] already in tree.» )
self . rebalance ()
def rebalance ( self ):
»’
Rebalance a particular (sub)tree
»’
# key inserted. Let’s check if we’re balanced
self . update_heights ( False )
self . update_balances ( False )
while self . balance < - 1 or self . balance >1 :
if self . balance > 1 :
if self . node . left . balance < 0 :
self . node . left . lrotate () # we’re in case II
self . update_heights ()
self . update_balances ()
self . rrotate ()
self . update_heights ()
self . update_balances ()
if self . balance < - 1 :
if self . node . right . balance > 0 :
self . node . right . rrotate () # we’re in case III
self . update_heights ()
self . update_balances ()
self . lrotate ()
self . update_heights ()
self . update_balances ()
def rrotate ( self ):
# Rotate left pivoting on self
debug ( ‘Rotating ‘ + str ( self . node . key ) + ‘ right’ )
A = self . node
B = self . node . left . node
T = B . right . node
self . node = B
B . right . node = A
A . left . node = T
def lrotate ( self ):
# Rotate left pivoting on self
debug ( ‘Rotating ‘ + str ( self . node . key ) + ‘ left’ )
A = self . node
B = self . node . right . node
T = B . left . node
self . node = B
B . left . node = A
A . right . node = T
def update_heights ( self , recurse = True ):
if not self . node == None :
if recurse :
if self . node . left != None :
self . node . left . update_heights ()
if self . node . right != None :
self . node . right . update_heights ()
self . height = max ( self . node . left . height ,
self . node . right . height ) + 1
else :
self . height = — 1
def update_balances ( self , recurse = True ):
if not self . node == None :
if recurse :
if self . node . left != None :
self . node . left . update_balances ()
if self . node . right != None :
self . node . right . update_balances ()
self . balance = self . node . left . height — self . node . right . height
else :
self . balance = 0
def delete ( self , key ):
# debug(«Trying to delete at node: » + str(self.node.key))
if self . node != None :
if self . node . key == key :
debug ( «Deleting . » + str ( key ))
if self . node . left . node == None and self . node . right . node == None :
self . node = None # leaves can be killed at will
# if only one subtree, take that
elif self . node . left . node == None :
self . node = self . node . right . node
elif self . node . right . node == None :
self . node = self . node . left . node
# worst-case: both children present. Find logical successor
else :
replacement = self . logical_successor ( self . node )
if replacement != None : # sanity check
debug ( «Found replacement for » + str ( key ) + » -> » + str ( replacement . key ))
self . node . key = replacement . key
# replaced. Now delete the key from right child
self . node . right . delete ( replacement . key )
self . rebalance ()
return
elif key < self . node . key :
self . node . left . delete ( key )
elif key > self . node . key :
self . node . right . delete ( key )
self . rebalance ()
else :
return
def logical_predecessor ( self , node ):
»’
Find the biggest valued node in LEFT child
»’
node = node . left . node
if node != None :
while node . right != None :
if node . right . node == None :
return node
else :
node = node . right . node
return node
def logical_successor ( self , node ):
»’
Find the smallese valued node in RIGHT child
»’
node = node . right . node
if node != None : # just a sanity check
while node . left != None :
debug ( «LS: traversing: » + str ( node . key ))
if node . left . node == None :
return node
else :
node = node . left . node
return node
def check_balanced ( self ):
if self == None or self . node == None :
return True
# We always need to make sure we are balanced
self . update_heights ()
self . update_balances ()
return (( abs ( self . balance ) < 2 ) and self . node . left . check_balanced () and self . node . right . check_balanced ())
def inorder_traverse ( self ):
if self . node == None :
return []
inlist = []
l = self . node . left . inorder_traverse ()
for i in l :
inlist . append ( i )
inlist . append ( self . node . key )
l = self . node . right . inorder_traverse ()
for i in l :
inlist . append ( i )
return inlist
def display ( self , level = 0 , pref = » ):
»’
Display the whole tree. Uses recursive def.
TODO: create a better display using breadth-first search
»’
self . update_heights () # Must update heights before balances
self . update_balances ()
if ( self . node != None ):
print ‘-‘ * level * 2 , pref , self . node . key , «[» + str ( self . height ) + «:» + str ( self . balance ) + «]» , ‘L’ if self . is_leaf () else ‘ ‘
if self . node . left != None :
self . node . left . display ( level + 1 , ‘
if self . node . left != None :
self . node . right . display ( level + 1 , ‘>’ )
# Usage example
if __name__ == «__main__» :
a = AVLTree ()
print «—— Inserting ——-«
#inlist = [5, 2, 12, -4, 3, 21, 19, 25]
inlist = [ 7 , 5 , 2 , 6 , 3 , 4 , 1 , 8 , 9 , 0 ]
for i in inlist :
a . insert ( i )
a . display ()
print «—— Deleting ——-«
a . delete ( 3 )
a . delete ( 4 )
# a.delete(5)
a . display ()
print
print «Input :» , inlist
print «deleting . » , 3
print «deleting . » , 4
print «Inorder traversal:» , a . inorder_traverse ()

Источник

Читайте также:  Можно ли долбить перфоратором дерево
Оцените статью