У ночной красавицы красная окраска цветков неполно доминирует над белой. При скрещивании красноцветкового растения с белоцветковым получено 48 растений первого поколения. От их самоопыления получено 240 растений во втором поколении. Сколько типов гамет может дать розовоцветковое растение? Сколько растений в первом поколении имеют розовую окраску цветков? Сколько разных генотипов может образоваться во втором поколении? Сколько растений во втором поколении имеют красную окраску цветков? Сколько растений во втором поколении имеют белую окраску цветков?
Получи верный ответ на вопрос 🏆 «У ночной красавицы красная окраска цветков неполно доминирует над белой. При скрещивании красноцветкового растения с белоцветковым получено . » по предмету 📕 Биология, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Выберите один правильный ответ. 1. Одноклеточные организмы объединены в царство: 1-грибов, 2-бактерий, 3-растений, 4-животных. 2. Оформленное ядро отсутствует в клетке: 1-грибов, 2-растений, 3-бактерий, 4-животных 3.
Впячивания внутренней мембраны — кристы — находятся в 1) митохондрии 2) хлоропласте 3) эндоплазматической сети 4) лизосоме
Какие функции в клетке выполняет цитоплазма? а) обеспечивает взаимодействие ядра и органоидов; б) придает клетке форму; в) обеспечивает взаимодействие ядра и органоидов; г) защищает содержимое клетки от воздействия среды.
При каких условиях относительные частоты генов в популяции не будут изменяться из поколения в поколение?
Главная » Биология » У ночной красавицы красная окраска цветков неполно доминирует над белой. При скрещивании красноцветкового растения с белоцветковым получено 48 растений первого поколения. От их самоопыления получено 240 растений во втором поколении.
Источник
Самоопыление растений ночной красавицы
Сколько разных фенотипов получается при самоопылении растений с розовыми лепестками венчика (гетерозигота) в случае неполного доминирования?
При самоопылении растений с розовыми лепестками венчика в случае неполного доминирования. Аа х Аа — получим 3 фенотипа: АА красные; Аа розовые; аа белые. Неважно проявление признака (цвет), необходимо знать, что при самоопылении гетерозигот при неполном доминировании получается 3 фенотипа.
Задания Д26 C6 № 22015
Укажите не менее четырёх ароморфозов генеративных органов покрытосеменных растений.
По условию, можно указать любые 4 ароморфоза.
1. Появление двойного оплодотворения, в следствие чего из гаплоидной клетки при опылении образуется диплоидный зародыш семени, а из диплоидной клетки образуется эндосперм, имеющий триплоидный набор хромосом.
2. Появление эндосперма. Эндосперм (триплоидный) — это запасное вещество для питания семени.
3. Семяпочка скрыта внутри завязи пестика и защищена от внешних воздействий.
4. Повышение эффективности опыления разными способами (ветром, насекомыми, самоопыление).
5. Семена развиваются внутри околоплодника, защищены оболочками.
6. Появление околоцветника, что сделало возможным переход к энтомофилии (опылению насекомыми). Привлекательный запах и яркий цвет цветков привлекает насекомых-опылителей для более эффективного опыления.
Генеративные органы — цветок, плод и семя — обеспечивают половое размножение растений.
У покрытосеменных (цветковых) растений, в связи с особенностями их развития, возникают высокоспециализированные генеративные органы — мужские гаметофиты (пыльцевые зерна), состоящие из двух клеток (генеративной и вегетативной), и сильно редуцированные женские гаметофиты — зародышевые мешки.
Особенности структуры — мужские гаметофиты 2-клеточные (клетка трубки и генеративная), женский гаметофит — 8-ядерный зародышевый мешок: в сторону микропиле семязачатка лежат 3 клетки (яйцеклетка и 2 синергиды), на противоположном конце — 3 клетки — антиподы, в центре — 2 центральных ядра. Особенности гаметангиев и гамет — антеридии и архегонии не образуются. Гаметы — 2 спермия и яйцеклетка. Условия полового процесса — мужские гаметофиты (пыльца) переносятся на рыльце пестика цветков ветром или опылителями (насекомыми, животными, птицами). 6 зародышевом мешке семяпочки происходит особый тип полового процесса, характерный только для цветковых растений — двойное оплодотворение. 2 спермия достигают зародышевого мешка по пыльцевой трубке. Один из них сливается с яйцеклеткой, второй — с диплоидным центральным ядром. В результате этого процесса образуется семя с зародышем и триплоидным эндоспермом, заключенное внутри плода.
Критерии оценивания выполнения задания | Баллы |
---|---|
Ответ включает четыре из названных выше элементов и не содержит биологических ошибок | 3 |
Ответ включает три из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает четыре названных выше элемента, но содержит биологические ошибки | 2 |
Ответ включает два из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает три из названных выше элементов, но содержит биологические ошибки | 1 |
Ответ включает только один из названных выше элементов и содержит биологические ошибки, ИЛИ ответ неправильный | 0 |
Максимальный балл | 3 |
Тип 4 № 22289
Какое количество фенотипических классов получится при самоопылении растения ночная красавица с розовыми цветками, если одно из предковых растений имело красные цветки? Ответ запишите в виде числа.
При самоопылении растений с розовыми лепестками венчика в случае неполного доминирования. Аа х Аа — получим 3 фенотипа: АА красные; Аа розовые; аа белые. Неважно проявление признака (цвет), необходимо знать, что при самоопылении гетерозигот при неполном доминировании получается 3 фенотипа.
Задания Д7 № 23036
Все приведённые ниже термины и приёмы, кроме двух, используются для описания методов клеточной инженерии. Определите два термина или приёма, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны
2) трансплантация ядер клеток
3) межлинейная гибридизация
4) гибридизация соматических клеток
5) выращивание растений из каллусной ткани
Два термина или приёма, «выпадающих» из общего списка:
3) межлинейная гибридизация
Гетерозис (от греч. heteroiosis — изменение, превращение) — «гибридная сила», ускорение роста и увеличение размеров, повышение жизнестойкости и плодовитости гибридов первого поколения при различных скрещиваниях как животных, так и растений.
Межлинейная гибридизация
Для получения чистой линии, то есть генетически однородного сорта, применяют индивидуальный отбор, при котором путем самоопыления получают потомство от единственной особи с желательными признаками.
Однако затем проводят перекрестное опыление между разными самоопыляющимися линиями и в результате в ряде случаев получают высокоурожайные гибриды, обладающие нужными селекционеру свойствами. Это метод межлинейной гибридизации, при котором часто наблюдается эффект гетерозиса: гибриды первого поколения обладают высокой урожайностью и устойчивостью к неблагоприятным воздействиям. Гетерозис характерен для гибридов первого поколения, которые получаются при скрещивании не только разных линий, но и разных сортов и даже видов.
Методы клеточной инженерии:
5) Культура изолированных тканей обычно бывает представлена каллусными или реже – опухолевыми тканями. Оторванная от коллектива себе подобных клетка в пробирке сохраняет «память» — генетическую информацию, заложенную родителями. Но специализацию она утрачивает и образует при делении нечто аморфное, напоминающее по форме морскую губку – каллус– это ткань, которая возникает не только в пробирке, но и в естественных условиях при поранении растения.
Регенерации полноценных растений из каллуса добиваются в принципе двумя путями: дифференциацией побегов и корней посредством изменения соотношения гормонов цитокинина и ауксина или образованием эмбриоидов. Этот соматический (асексуальный) эмбриогенез впервые был прослежен к 1959 г. у моркови; со временем его стали применять при производстве жизнеспособных растений у разных видов.
4) Гибридизация соматических клеток
Создание неполовых гибридов путем слияния изолированных протопластов, полученных из соматических клеток. Этот метод позволяет скрещивать филогенетически отдаленные виды растений, которые невозможно скрестить обычным половым путем, вызывать слияние трех и более родительских клеток, получать асимметричные гибриды, несущие весь генный набор одного из родителей наряду с несколькими хромосомами или генами, или только органеллами и цитоплазмой другого. Гибридизация соматических клеток дает возможность не только соединить в одном ядре гены далеких видов растений, но и сочетать в гибридной клетке цитоплазматические гены партнеров.
2) Трансплантация ядер клеток
В последнее время разработано несколько эффективных методов, позволяющих изучать взаимоотношения ядра и цитоплазмы.
Наиболее важное значение, по-видимому, имеет метод пересадки ядра одной клетки в цитоплазму другой клетки, из которой предварительно удалили собственное ядро. Наблюдения за поведением таких клеток позволяют изучать влияние объединения ядра и цитоплазмы разных клеток на поведение обоих компонентов.
Хотя большинство признаков ядерно-цитоплазматических гибридов, несомненно, определяется ядром, некоторые из них в отдельных случаях могут контролироваться цитоплазмой и сохраняться в ряду многих клеточных поколений.
Источник