Симметричный обход обходы деревьев

Прямой, обратный и симметричный обходы дерева

Если сыновья узла упорядочиваются слева направо, такое дерево называется упорядоченным. В противном случае дерево называетсянеупорядоченым.

Для упорядоченных деревьев существует три способа рекурсивного описания. Для данных способов существуют правила:

1. Если дерево T является нулевым, то в список обхода заносится нулевая запись.

2. Если дерево состоит ровно из 1 узла, то в список обхода заносится этот узел.

Способы рекурсивного описания:

  • Прямой обход— сначала посещается корень, затем узлы поддерева
  • Симметричный обход— сначала посещаются все узлы поддерева t1, затем корень n, затем последовательно в симметричном порядке все узлы поддеревьев t1,…,tk
  • Обход в обратном порядке— сначала посещаются в обратном порядке все узлы поддерева t1, затем t2и т.д., последним посещается корень n.

Схемы алгоритмов обходов:

Только в случае симметричного обхода между сыновьями записывается родитель.

Деревья выражений

Если в каждом узле дерева хранятся некоторые данные, то это значение называется меткой узла. Существуют деревья, метки узлов которых являются числами (операндами), а метки внутренних узлов являются символами математических операций (операторами). Такие деревья называются деревьями выражений. При обходе деревьев выражений составляется список узлов, который можно интерпретировать как запись арифметического выражения. В порядке прямого обхода получается список меток узлов x + a b — c d. Такая форма записи называется префиксной формой выражения. В порядке обратного обхода получается постфиксная форма выражения: a b + c d — x, а в порядке симметричного обхода — инфиксная: (a+b)x(c..d). Вопрос №23. Деревья как АТД, набор операций. Реализация АТД — дерево (с помощью массивов, с использованием списка сыновей). Список операций АТД TREE:

  • MAKENULL(T) — создать пустое дерево;
  • ROOT(T) — получить метку корня дерева;
  • PARENT(n, T) — узнать родителя;
  • LEFTMOST_CHILD(n, T) -самый левый сын;
  • RIGHT_SIBLING(n, T) — правый брат;
  • LABEL(n, T) получить метку узла;
  • CREATE(n, T1, T2, . ) — создать дерево из узла-корня и набора поддеревьев.

Рекурсивная функция, которая позволяет обходить дерево в порядке прямого обхода и составлять его список: Функция, которая производит обход дерева не в прямом порядке, использует стек. Для этого можно использовать предыдущую реализацию стека. Основные идея в том, что когда функция дойдет до узла n, стек будет хранить путь от корня до этого узла. Причем корень будет на дне стека, а узел n — на вершине. Сама функция может работать в двух режимах: 1. обход по направлению к потомкам самого левого еще не проверенного пути дерева до тех пор, пока не встретится лист, при этом узлы заносятся в стек. 2. возврат по пройденному пути с поочередным извлечением узлов до тех пор, пока не встретится узел, имеющий еще неописанного правого брата.

Читайте также:  Поделки дерево своими руками из кофе

Реализация деревьев

Одна из реализаций дерева может быть выполнена на основе массива, где каждый элемент массива – это имя родительского узла. Такая форма дерева очень удобна для реализации PARENT(n, T). Она основана на том свойстве деревьев, что каждый узел, отличающийся от корня, имеет только одного родителя. Однако, она неудобна для написания операторов, дающих информацию о сыновьях. Чтобы реализовать операции этого дерева, нужно условиться о том, что сыновья одного узла нумеруются в возрастающем порядке слева направо. Для представления дерева с помощью списка сыновей можно ввести массив указателей на первый элемент списка сыновей. Каждый указатель является массивом, состоящим из элементов-узлов. Элементы списка сыновей являются сыновьями данного конкретного узла. Список сыновей Такая реализация не очень удобна, если надо реализовать операцию . Возможно следующее изменение представления дерева. В данной реализации заменим массив заголовков на массив области узлов. Элементы этого массива расположены произвольно, каждый элемент — это структура с двумя полями. Первые два поля — это указатели на левых сыновей. Вторые два поля — это указатели на правых братьев. Используя такое представление, можно найти самого левого сына как cellspace [ i ]. node = n. Предположим, что имя узла это n, тогда указатель, стоящий в nodespace[i ]. header, указывает на заголовок самого левого узла в массиве cellspace. Существует модификация предложенного способы представления дерева не с помощью двух массивов, а с помощью одного. Такой способ представления удобен для реализации всех операций АТД дерева, за исключением PARENT. Вопрос №24. Определение двоичных деревьев. Реализация двоичных деревьев в виде массива структур с полями: левый сын, правый сын. Двоичное дерево(бинарное) — это или пустое дерево или дерево у которого любой узел или лист имеет либо левого сына либо или правого сына. Рационально для представления двоичных деревьев использовать массив cellspace, каждый элемент массива — структура. Вопрос №25. Применение двоичных деревьев для конструирования кодов Хаффмана (этапы создания дерева Хаффмана, идея реализации алгоритма).

Источник

Дерево

Дерево – структура данных, представляющая собой древовидную структуру в виде набора связанных узлов.

Бинарное дерево — это конечное множество элементов, которое либо пусто, либо содержит элемент ( корень ), связанный с двумя различными бинарными деревьями, называемыми левым и правым поддеревьями . Каждый элемент бинарного дерева называется узлом . Связи между узлами дерева называются его ветвями .

Бинарное дерево

Способ представления бинарного дерева:

Корень дерева расположен на уровне с минимальным значением.

Узел D , который находится непосредственно под узлом B , называется потомком B . Если D находится на уровне i , то B – на уровне i-1 . Узел B называется предком D .

Читайте также:  Для чего в больницах сажают деревья

Максимальный уровень какого-либо элемента дерева называется его глубиной или высотой .

Если элемент не имеет потомков, он называется листом или терминальным узлом дерева.

Остальные элементы – внутренние узлы (узлы ветвления).

Число потомков внутреннего узла называется его степенью . Максимальная степень всех узлов есть степень дерева.

Число ветвей, которое нужно пройти от корня к узлу x , называется длиной пути к x . Корень имеет длину пути равную 0 ; узел на уровне i имеет длину пути равную i .

Бинарное дерево применяется в тех случаях, когда в каждой точке вычислительного процесса должно быть принято одно из двух возможных решений.

Имеется много задач, которые можно выполнять на дереве.

Распространенная задача — выполнение заданной операции p с каждым элементом дерева. Здесь p рассматривается как параметр более общей задачи посещения всех узлов или задачи обхода дерева.

Если рассматривать задачу как единый последовательный процесс, то отдельные узлы посещаются в определенном порядке и могут считаться расположенными линейно.

Способы обхода дерева

Пусть имеем дерево, где A — корень, B и C — левое и правое поддеревья.

Дерево

Существует три способа обхода дерева:

  • Обход дерева сверху вниз (в прямом порядке): A, B, C — префиксная форма.
  • Обход дерева в симметричном порядке (слева направо): B, A, C — инфиксная форма.
  • Обход дерева в обратном порядке (снизу вверх): B, C, A — постфиксная форма.

Реализация дерева

Узел дерева можно описать как структуру:

struct tnode <
int field; // поле данных
struct tnode *left; // левый потомок
struct tnode *right; // правый потомок
>;

При этом обход дерева в префиксной форме будет иметь вид

void treeprint(tnode *tree) <
if (tree!= NULL ) < //Пока не встретится пустой узел
cout field; //Отображаем корень дерева
treeprint(tree->left); //Рекурсивная функция для левого поддерева
treeprint(tree->right); //Рекурсивная функция для правого поддерева
>
>

Обход дерева в инфиксной форме будет иметь вид

void treeprint(tnode *tree) <
if (tree!= NULL ) < //Пока не встретится пустой узел
treeprint(tree->left); //Рекурсивная функция для левого поддерева
cout field; //Отображаем корень дерева
treeprint(tree->right); //Рекурсивная функция для правого поддерева
>
>

Обход дерева в постфиксной форме будет иметь вид

void treeprint(tnode *tree) <
if (tree!= NULL ) < //Пока не встретится пустой узел
treeprint(tree->left); //Рекурсивная функция для левого поддерева
treeprint(tree->right); //Рекурсивная функция для правого поддерева
cout field; //Отображаем корень дерева
>
>

Бинарное (двоичное) дерево поиска – это бинарное дерево, для которого выполняются следующие дополнительные условия (свойства дерева поиска):

  • оба поддерева – левое и правое, являются двоичными деревьями поиска;
  • у всех узлов левого поддерева произвольного узла X значения ключей данных меньше, чем значение ключа данных самого узла X ;
  • у всех узлов правого поддерева произвольного узла X значения ключей данных не меньше, чем значение ключа данных узла X .

Данные в каждом узле должны обладать ключами, на которых определена операция сравнения меньше.

Читайте также:  Крона деревьев типы крон

Как правило, информация, представляющая каждый узел, является записью, а не единственным полем данных.

Для составления бинарного дерева поиска рассмотрим функцию добавления узла в дерево.

Добавление узлов в дерево

struct tnode * addnode( int x, tnode *tree) <
if (tree == NULL ) < // Если дерева нет, то формируем корень
tree = new tnode; // память под узел
tree->field = x; // поле данных
tree->left = NULL ;
tree->right = NULL ; // ветви инициализируем пустотой
> else if (x < tree->field) // условие добавление левого потомка
tree->left = addnode(x,tree->left);
else // условие добавление правого потомка
tree->right = addnode(x,tree->right);
return (tree);
>

Удаление поддерева

void freemem(tnode *tree) <
if (tree!= NULL ) <
freemem(tree->left);
freemem(tree->right);
delete tree;
>
>

Пример Написать программу, подсчитывающую частоту встречаемости слов входного потока.

Поскольку список слов заранее не известен, мы не можем предварительно упорядочить его. Неразумно пользоваться линейным поиском каждого полученного слова, чтобы определять, встречалось оно ранее или нет, т.к. в этом случае программа работает слишком медленно.

Один из способов — постоянно поддерживать упорядоченность уже полученных слов, помещая каждое новое слово в такое место, чтобы не нарушалась имеющаяся упорядоченность. Воспользуемся бинарным деревом.

В дереве каждый узел содержит:

  • указатель на текст слова;
  • счетчик числа встречаемости;
  • указатель на левого потомка;
  • указатель на правого потомка.

Рассмотрим выполнение программы на примере фразы

now is the time for all good men to come to the aid of their party

now is the time for all good men to come to the aid of their party

При этом дерево будет иметь следующий вид

#include
#include
#include
#include
//#include
#define MAX WORD 100
struct tnode < // узел дерева
char * word; // указатель на строку (слово)
int count; // число вхождений
struct tnode* left; // левый потомок
struct tnode* right; // правый потомок
>;
// Функция добавления узла к дереву
struct tnode* addtree( struct tnode* p, char * w) int cond;
if (p == NULL ) p = ( struct tnode*)malloc( sizeof ( struct tnode));
p->word = _strdup(w);
p->count = 1;
p->left = p->right = NULL ;
>
else if ((cond = strcmp(w, p->word)) == 0)
p->count++;
else if (cond < 0)
p->left = addtree(p->left, w);
else
p->right = addtree(p->right, w);
return p;
>
// Функция удаления поддерева
void freemem(tnode* tree) if (tree != NULL ) freemem(tree->left);
freemem(tree->right);
free(tree->word);
free(tree);
>
>
// Функция вывода дерева
void treeprint( struct tnode* p) if (p != NULL ) treeprint(p->left);
printf( «%d %s\n» , p->count, p->word);
treeprint(p->right);
>
>
int main() struct tnode* root;
char word[MAX WORD ];
root = NULL ;
do scanf_s( «%s» , word, MAX WORD );
if (isalpha(word[0]))
root = addtree(root, word);
> while (word[0] != ‘0’ ); // условие выхода – ввод символа ‘0’
treeprint(root);
freemem(root);
getchar();
getchar();
return 0;
>

Результат выполнения: бинарное дерево

Результат выполнения

Комментариев к записи: 19

Источник

Оцените статью