Способы представления структур данных деревья

3.2. Деревья и леса

Другой подход к представлению иерархических структур представляют собой деревья и леса. Это наиболее распространенные структуры, которые используются как базовые большим количеством алгоритмов обработки данных, в связи с чем заслуживают самого пристального внимания.

Аналогично другим структурам данных, таким как линейные и иерархические списки, можно ввести понятие АТД «Дерево» или «Лес», представив формальную функциональную спецификацию. Однако такая спецификация будет мало полезна, поскольку имеется огромное количество алгоритмов, использующих деревья (леса), причем часто это деревья специального вида со своими специфическими функциями. Для большинства таких алгоритмов применение универсального типа «Дерево» или «Лес» приведет к неэффективной реализации. Поэтому деревья и леса обычно используются как составная часть более сложных АТД (очереди с приоритетами, множества, словари и т. д.). Некоторые из этих АТД будут рассмотрены далее.

В данной главе сосредоточим максимум внимания на деревьях и лесах как структурах данных. Для этого сначала рассмотрим их как абстрактные математические объекты, а затем перейдем к различным формам представления в памяти и соответствующим алгоритмам.

3.2.1. Определения

Когда речь идет об иерархических структурах, то под термином «дерево» обычно понимают дерево с корнем (корневое дерево). Однако заметим, что корневое дерево — это частный случай более общего определения дерева, называемого иначе свободным деревом. Свободные деревья, в свою очередь, являются частным случаем графов и определяются в терминах теории графов. Они будут рассмотрены позже.В данной главе будем рассматривать только корневые деревья, называя их просто деревьями.

Особый вид иерархических структур — бинарные деревья — будут рассмотрены отдельно.

Формально дерево можно рекурсивно определить следующим образом[8].

Дерево (tree) — конечное множество T одного или более узлов (nodes) со следующими свойствами:

  1. Существует один выделенный узел, называемый корнем (root) этого дерева T. Дерево может состоять и из одного корня.
  2. Остальные узлы (если они есть) распределены среди k непересекающихся множеств T1, Т2, . Tk, и каждое их этих множеств, в свою очередь, является деревом. Деревья T1, Т2, . Tk называются поддеревьями (subtrees) этого корня.

Из этого определения следует, что каждый узел дерева является корнем некоторого другого дерева (поддерева).

Совокупность нескольких непересекающихся деревьев называется лесом (forest —иногда переводится как бор). Например, все потомки одного узла дерева образуют лес. Лес всегда можно преобразовать в дерево, добавив один единственный корневой элемент и связав его с корнями всех деревьев, из которых состоит лес. Поэтому лес и дерево — это два неразрывно сязанных понятия. Для того, чтобы подчеркнуть общность этих понятий, лес из n деревьев иногда называют деревом с n-кратным корнем.

3.2. Способы представления деревьев

Существует множество способов представления деревьев, одни из них используют двухмерные рисунки для наглядного отображения отношений иерархии, в других эти отношения удается отобразить и при помощи одномерного представления. Остановимся на наиболее часто используемых способах.

Читайте также:  Оливковое дерево как сажать

Рис.3.2. Графическое изображение дерева

Традиционно деревья изображают графически, располагая корень вверху (т. е. дерево растет вниз), как показано на рис. 3.2. Очевидно, такое представление связано с тем, что человеку привычнее рисовать и читать рисунок сверху вниз. Узлы дерева обычно изображают с помощью окружностей, соединяя каждый узел с его сыновьями линиями (связями). Связи обычно изображают без стрелки на конце.

Другим представлением может быть так называемый уступчатый список. На рис.3.3,а,б так представлено дерево из рис.3.2.

Рис.3.3. Представление дерева: а – в виде уступчатого списка; б – в виде “упрощенного”уступчатого списка

Здесь двухмерность рисунка поддерживается посредством отступов.

Более компактными являются одномерные способы изображения деревьев. Например, от списка с отступами можно легко перейти к десятичной системе обозначений Дьюи, которая используется в библиографии. Например, для нашего дерева она будет выглядеть так:

1.a, 1.1.b, 1.1.1.i, 1.1.2.j, 1.2.c, 1.2.1.h,

Другой вид одномерного представления дерева — это так называемая скобочная запись, в которой отношения иерархии представляются с помощью вложенности скобок. Один из возможных вариантов скобочной записи [8] для дерева (рис.3.2) выглядит так:

Можно немного сократить количество скобок:

a ( b ( i, j ), c ( h ), d ( e, f ( k ), g ) )

Такой способ называется левым скобочным представлением дерева, поскольку корень каждого поддерева расположен слева от скобки, открывающей список его поддеревьев. Возможны и другие способы перечисления порядка узлов, например, правое скобочное представление, в котором корень расположен справа. Заметим, что различные формы скобочного представления связаны с понятием обхода дерева, который будет подробно рассмотрен ниже.

В заключение упомянем еще один очень компактный способ представления деревьев, который основан на очень важном свойстве иерархической структуры. На рис. 3.2 хорошо видно, что дерево разветвляется от корня к листьям, т. е. каждый узел (кроме корня) имеет только один связанный с ним родительский (вышестоящий) узел. Из этого следует, что возможно такое простое представление дерева, в котором для каждого узла указана одна единственная ссылка на его родителя (для корня — пустая ссылка).

Например, представим дерево из рис. 3.2. в виде таблицы, содержащей для каждого узла обозначение его родителя. Для экономии места расположим таблицу горизонтально, хотя логичнее представить дерево в виде таблицы из двух столбцов— «узел»-«его родитель».

Предствление дерева из рис. 3.2 с помощью ссылок на родителей

Источник

Дерево как структура данных

Какую выгоду можно извлечь из такой структуры данных, как дерево? В этой статье мы расскажем о данных в виде дерева, рассмотрим основные определения, которые следует знать, а также узнаем, как и зачем используется дерево в программировании. Спойлер: бинарные деревья часто применяют для поиска информации в базах данных, для сортировки данных, для проведения вычислений, для кодирования и в других случаях. Но давайте обо всем по порядку.

Читайте также:  Как получаются двойные деревья

Основные термины

Дерево — это, по сути, один из частных случаев графа. Древовидная модель может быть весьма эффективна в случае представления динамических данных, особенно тогда, когда у разработчика стоит цель быстрого поиска информации, в тех же базах данных, к примеру. Еще древом называют структуру данных, которая представляет собой совокупность элементов, а также отношений между этими элементами, что вместе образует иерархическую древовидную структуру.

Каждый элемент — это вершина или узел дерева. Узлы, соединенные направленными дугами, называются ветвями. Начальный узел — это корень дерева (корневой узел). Листья — это узлы, в которые входит 1 ветвь, причем не выходит ни одной.

Общую терминологию можно посмотреть на левой и правой части картинки ниже:

Какие свойства есть у каждого древа:

— существует узел, в который не входит ни одна ветвь;

— в каждый узел, кроме корневого узла, входит 1 ветвь.

На практике деревья нередко применяют, изображая различные иерархии. Очень популярны, к примеру, генеалогические древа — они хорошо известны. Все узлы с ветвями, исходящими из единой общей вершины, являются потомками, а сама вершина называется предком (родительским узлом). Корневой узел не имеет предков, а листья не имеют потомков.

Также у дерева есть высота (глубина). Она определяется числом уровней, на которых располагаются узлы дерева. Глубина пустого древа равняется нулю, а если речь идет о дереве из одного корня, тогда единице. В данном случае на нулевом уровне может быть лишь одна вершина – корень, на 1-м – потомки корня, на 2-м – потомки потомков корня и т. д.

Ниже изображен графический вывод древа с 4-мя уровнями (дерево имеет глубину, равную четырем):

Следующий термин, который стоит рассмотреть, — это поддерево. Поддеревом называют часть древообразной структуры, которую можно представить в виде отдельного дерева.

Идем дальше. Древо может быть упорядоченным — в данном случае ветви, которые исходят из каждого узла, упорядочены по некоторому критерию.

Степень вершины в древе — это число ветвей (дуг), выходящих из этой вершины. Степень равняется максимальной степени вершины, которая входит в дерево. В этом случае листьями будут узлы, имеющие нулевую степень. По величине степени деревья бывают:

— двоичные (степень не больше двух);

— сильноветвящиеся (степень больше двух).

Деревья — это рекурсивные структуры, ведь каждое поддерево тоже является деревом. Каждый элемент такой рекурсивной структуры является или пустой структурой, или компонентом, с которым связано конечное количество поддеревьев.

Когда мы говорим о рекурсивных структурах, то действия с ними удобнее описывать посредством рекурсивных алгоритмов.

Обход древа

Чтобы выполнить конкретную операцию над всеми вершинами, надо все эти узлы просмотреть. Данную задачу называют обходом дерева. То есть обход представляет собой упорядоченную последовательность узлов, в которой каждый узел встречается лишь один раз.

Читайте также:  При цветении деревья можно пересаживать

В процессе обхода все узлы должны посещаться в некотором, заранее определенном порядке. Есть ряд способов обхода, вот три основные:

— прямой (префиксный, preorder);

— симметричный (инфиксный, inorder);

— обратный (постфиксный, postorder).

Существует много древовидных структур данных: двоичные (бинарные), красно-черные, В-деревья, матричные, смешанные и пр. Поговорим о бинарных.

Бинарные (двоичные) деревья

Бинарные имеют степень не более двух. То есть двоичным древом можно назвать динамическую структуру данных, где каждый узел имеет не большое 2-х потомков. В результате двоичное дерево состоит из элементов, где каждый из элементов содержит информационное поле, а также не больше 2-х ссылок на различные поддеревья. На каждый элемент древа есть только одна ссылка.

У бинарного древа каждый текущий узел — это структура, которая состоит из 4-х видов полей. Какие это поля:

— информационное (ключ вершины);

— служебное (включена вспомогательная информация, однако таких полей может быть несколько, а может и не быть вовсе);

— указатель на правое поддерево;

— указатель на левое поддерево.

Самый удобный вид бинарного древа — бинарное дерево поиска.

Что значит древо в контексте программирования?

Мы можем долго рассуждать о математическом определении древа, но это вряд ли поможет понять, какие именно выгоды можно извлечь из древовидной структуры данных. Тут важно отметить, что древо является способом организации данных в форме иерархической структуры.

В каких случаях древовидные структуры могут быть полезны при программировании:

  1. Когда данная иерархия существует в предметной области разрабатываемой программы. К примеру, программа должна обрабатывать генеалогическое древо либо работать со структурой каталогов. В таких ситуациях иногда есть смысл сохранять между объектами программы существующие иерархические отношения. В качестве примера можно вывести древо каталогов операционной системы UNIX:
  • Когда между объектами, которые обрабатывает программа, отношения иерархии не заданы явно, но их можно задать, что сделает обработку данных удобнее. Как тут не вспомнить разработку парсеров либо трансляторов, где весьма полезным может быть древо синтаксического разбора?
  • А сейчас очевидная вещь: поиск объектов более эффективен, когда объекты упорядочены, будь то те же базы данных. К примеру, поиск значения в неструктурированном наборе из тысячи элементов потребует до тысячи операций, тогда как в упорядоченном наборе может хватить всего дюжины. Вывод прост: раз иерархия — эффективный способ упорядочивания объектов, почему же не использовать древовидную иерархию для ускорения поиска узлов со значениями? Так и происходит: если вспомнить бинарные деревья, то на практике их можно применять в следующих целях:

— поиск данных в базах данных (специально построенных деревьях);

— сортировка и вывод данных;

— вычисления арифметических выражений;

— кодирование по методу Хаффмана и пр.

Источник

Оцените статью