- Saved searches
- Use saved searches to filter your results more quickly
- License
- Algorithms-and-Data-Structures-2021/semester-work-red-black-tree
- Name already in use
- Sign In Required
- Launching GitHub Desktop
- Launching GitHub Desktop
- Launching Xcode
- Launching Visual Studio Code
- Latest commit
- Git stats
- Files
- README.md
- Красно-черные деревья: коротко и ясно
- Как бинарное дерево, красно-черное обладает свойствами:
- ключи всех левых потомков (в других определениях дубликаты должны располагаться с правой стороны либо вообще отсутствовать). Это неравенство должно быть истинным для всех потомков узла, а не только его дочерних узлов. Свойства красно-черных деревьев: 1) Каждый узел окрашен либо в красный, либо в черный цвет (в структуре данных узла появляется дополнительное поле – бит цвета). 2) Корень окрашен в черный цвет. 3) Листья(так называемые NULL-узлы) окрашены в черный цвет. 4) Каждый красный узел должен иметь два черных дочерних узла. Нужно отметить, что у черного узла могут быть черные дочерние узлы. Красные узлы в качестве дочерних могут иметь только черные. 5) Пути от узла к его листьям должны содержать одинаковое количество черных узлов(это черная высота). Ну и почему такое дерево является сбалансированным? Действительно, красно-черные деревья не гарантируют строгой сбалансированности (разница высот двух поддеревьев любого узла не должна превышать 1), как в АВЛ-деревьях. Но соблюдение свойств красно-черного дерева позволяет обеспечить выполнение операций вставки, удаления и выборки за время . И сейчас посмотрим, действительно ли это так. Пусть у нас есть красно-черное дерево. Черная высота равна (black height). Если путь от корневого узла до листового содержит минимальное количество красных узлов (т.е. ноль), значит этот путь равен . Если же путь содержит максимальное количество красных узлов ( в соответствии со свойством ), то этот путь будет равен . То есть, пути из корня к листьям могут различаться не более, чем вдвое (, где h — высота поддерева), этого достаточно, чтобы время выполнения операций в таком дереве было Как производится вставка? Вставка в красно-черное дерево начинается со вставки элемента, как в обычном бинарном дереве поиска. Только здесь элементы вставляются в позиции NULL-листьев. Вставленный узел всегда окрашивается в красный цвет. Далее идет процедура проверки сохранения свойств красно-черного дерева . Свойство 1 не нарушается, поскольку новому узлу сразу присваивается красный цвет. Свойство 2 нарушается только в том случае, если у нас было пустое дерево и первый вставленный узел (он же корень) окрашен в красный цвет. Здесь достаточно просто перекрасить корень в черный цвет. Свойство 3 также не нарушается, поскольку при добавлении узла он получает черные листовые NULL-узлы. В основном встречаются 2 других нарушения: 1) Красный узел имеет красный дочерний узел (нарушено свойство ). 2) Пути в дереве содержат разное количество черных узлов (нарушено свойство ). Подробнее о балансировке красно-черного дерева при разных случаях (их пять, если включить нарушение свойства ) можно почитать на wiki. Это вообще где-то используется? Да! Когда в институте на третьем курсе нам читали «Алгоритмы и структуры данных», я и не могла представить, что красно-черные деревья где-то используются. Помню, как мы не любили тему сбалансированных деревьев. Ох уж эти родственные связи в красно-черных деревьях («дядя», «дедушка», «чёрный брат и крестный красный отец»), прям Санта-Барбара какая-то. Правые и левые, малые и большие повороты АВЛ-деревьев – сплошные американские горки. Вы тоже не любите красно-черные деревья? Значит, просто не умеете их готовить. А кто-то просто взял и приготовил. Так, например, ассоциативные массивы в большинстве библиотек реализованы именно через красно-черные деревья. Это все, что я хотела рассказать. Источник
- Свойства красно-черных деревьев:
- Ну и почему такое дерево является сбалансированным?
- Как производится вставка?
- Это вообще где-то используется?
Saved searches
Use saved searches to filter your results more quickly
You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session.
License
Algorithms-and-Data-Structures-2021/semester-work-red-black-tree
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Sign In Required
Please sign in to use Codespaces.
Launching GitHub Desktop
If nothing happens, download GitHub Desktop and try again.
Launching GitHub Desktop
If nothing happens, download GitHub Desktop and try again.
Launching Xcode
If nothing happens, download Xcode and try again.
Launching Visual Studio Code
Your codespace will open once ready.
There was a problem preparing your codespace, please try again.
Latest commit
Git stats
Files
Failed to load latest commit information.
README.md
Красно-черное дерево — это один из видов самобалансирующихся двоичных деревьев поиска, гарантирующих логарифмический рост высоты дерева от числа узлов и позволяющее быстро выполнять основные операции дерева поиска: добавление, удаление и поиск узла. Сбалансированность достигается за счёт введения дополнительного атрибута узла дерева — «цвета». Этот атрибут может принимать одно из двух возможных значений — «чёрный» или «красный».
Сложность ключевых операций структуры данных
Описание основных частей семестрового проекта.
Проект состоит из следующих частей:
- src / include — реализация структуры данных (исходный код и заголовочные файлы);
- benchmark — контрольные тесты производительности структуры данных (операции добавления, удаления, поиска и пр.);
- dataset — наборы данных для запуска контрольных тестов и их генерация;
- С++ компилятор c поддержкой стандарта C++17 (например, GNU GCC 8.1.x и выше).
- Система автоматизации сборки CMake (версия 3.12.x и выше).
- Рекомендуемый объем оперативной памяти — не менее 8 ГБ.
- Свободное дисковое пространство объемом ~ 2 ГБ (набор данных для контрольных тестов).
Склонируйте проект к себе на устройство через Git for Windows (либо используйте возможности IDE):
git clone https://github.com/Algorithms-and-Data-Structures-2021/semester-work-red-black-tree.git
Генерация тестовых данных
Для генерации чисел мы использовали ГПСЧ (генератор псевдослучайных чисел), а именно mersenne twister, (mt19937). Генерирует случайное число он довольно быстро. Определен он в хедере random и пространстве имён std. Является 32-битным генератором.
Генерация тестового набора данных в формате comma-seperated values (CSV):
# переход в папку генерации набора данных cd dataset
По названию директории /dataset/data/add можно понять, что здесь хранятся наборы данных для контрольных тестов по добавлению элементов в структуру данных. Названия файлов 100.csv . 5000000.csv и т.д. хранят информацию о размере набора данных (т.е. количество элементов).
Контрольные тесты (benchmarks)
В benchmark / Benchmark.cpp реализовано одновременное тестирование всех ключевых методов по всем контрольным тестам. Если Вы хотите протестировать лишь один из методов, то закомментируйте тестирование остальных методов.
Список контрольных тестов
Источник
Красно-черные деревья: коротко и ясно
Итак, сегодня хочу немного рассказать о красно-черных деревьях. Рассказ будет кратким, без рассмотрения алгоритмов балансировки при вставке/удалении элементов в красно-черных деревьях.
Красно-черные деревья относятся к сбалансированным бинарным деревьям поиска.
Как бинарное дерево, красно-черное обладает свойствами:
1) Оба поддерева являются бинарными деревьями поиска.
2) Для каждого узла с ключом выполняется критерий упорядочения:
ключи всех левых потомков
(в других определениях дубликаты должны располагаться с правой стороны либо вообще отсутствовать).
Это неравенство должно быть истинным для всех потомков узла, а не только его дочерних узлов.
Свойства красно-черных деревьев:
1) Каждый узел окрашен либо в красный, либо в черный цвет (в структуре данных узла появляется дополнительное поле – бит цвета).
2) Корень окрашен в черный цвет.
3) Листья(так называемые NULL-узлы) окрашены в черный цвет.
4) Каждый красный узел должен иметь два черных дочерних узла. Нужно отметить, что у черного узла могут быть черные дочерние узлы. Красные узлы в качестве дочерних могут иметь только черные.
5) Пути от узла к его листьям должны содержать одинаковое количество черных узлов(это черная высота).
Ну и почему такое дерево является сбалансированным?
Действительно, красно-черные деревья не гарантируют строгой сбалансированности (разница высот двух поддеревьев любого узла не должна превышать 1), как в АВЛ-деревьях. Но соблюдение свойств красно-черного дерева позволяет обеспечить выполнение операций вставки, удаления и выборки за время . И сейчас посмотрим, действительно ли это так.
Пусть у нас есть красно-черное дерево. Черная высота равна (black height).
Если путь от корневого узла до листового содержит минимальное количество красных узлов (т.е. ноль), значит этот путь равен .
Если же путь содержит максимальное количество красных узлов ( в соответствии со свойством ), то этот путь будет равен .
То есть, пути из корня к листьям могут различаться не более, чем вдвое (, где h — высота поддерева), этого достаточно, чтобы время выполнения операций в таком дереве было
Как производится вставка?
Вставка в красно-черное дерево начинается со вставки элемента, как в обычном бинарном дереве поиска. Только здесь элементы вставляются в позиции NULL-листьев. Вставленный узел всегда окрашивается в красный цвет. Далее идет процедура проверки сохранения свойств красно-черного дерева .
Свойство 1 не нарушается, поскольку новому узлу сразу присваивается красный цвет.
Свойство 2 нарушается только в том случае, если у нас было пустое дерево и первый вставленный узел (он же корень) окрашен в красный цвет. Здесь достаточно просто перекрасить корень в черный цвет.
Свойство 3 также не нарушается, поскольку при добавлении узла он получает черные листовые NULL-узлы.
В основном встречаются 2 других нарушения:
1) Красный узел имеет красный дочерний узел (нарушено свойство ).
2) Пути в дереве содержат разное количество черных узлов (нарушено свойство ).
Подробнее о балансировке красно-черного дерева при разных случаях (их пять, если включить нарушение свойства ) можно почитать на wiki.
Это вообще где-то используется?
Да! Когда в институте на третьем курсе нам читали «Алгоритмы и структуры данных», я и не могла представить, что красно-черные деревья где-то используются. Помню, как мы не любили тему сбалансированных деревьев. Ох уж эти родственные связи в красно-черных деревьях («дядя», «дедушка», «чёрный брат и крестный красный отец»), прям Санта-Барбара какая-то. Правые и левые, малые и большие повороты АВЛ-деревьев – сплошные американские горки. Вы тоже не любите красно-черные деревья? Значит, просто не умеете их готовить. А кто-то просто взял и приготовил. Так, например, ассоциативные массивы в большинстве библиотек реализованы именно через красно-черные деревья.
Это все, что я хотела рассказать.
Источник