- Какие типы питания растений Вам известны?
- 6. Питание растений. Типы и виды питания растений.
- 7. Химический состав растений. Органические соединения сухого вещества растений, их роль в формировании качества продукции сельскохозяйственных культур.
- 8. Химический состав растений. Макро-, микро- и ультрамикроэлементы, необходимость их для растений. Роль зольных элементов в формировании качества продукции сельскохозяйственных культур.
Какие типы питания растений Вам известны?
Типы питания растений.
В зависимости от источника поглощаемого углерода различают несколько типов питания растений. Часть низших растений (все грибы и большая часть бактерий) может использовать углерод только из органических соединений, в которых он содержится в восстановленной форме. При окислении таких соединений в процессе дыхания освобождается запасённая в них химическая энергия, которая затем может расходоваться на различные эндергонические (т. е. требующие затрат энергии) процессы: синтез более сложных соединений, передвижение веществ в растении и др. Питание этого типа называется гетеротрофным, а растения, потребляющие органические источники углерода, — гетеротрофными. Питание за счёт мёртвых органических остатков называется сапрофитным, а растения, питающиеся мёртвыми органическими остатками, — сапрофитами. Этот тип питания свойствен всем гнилостным грибам и бактериям. Гетеротрофы, живущие за счёт органических соединений др. живых организмов, называются паразитами. К ним относятся все грибы и бактерии — возбудители болезней животных и растений, а также некоторые высшие растения, например заразиха, высасывающая с помощью специальных присосок соки др. растений. Паразитическое питание растений отличается от симбиоза, при котором происходит постоянный обмен продуктами жизнедеятельности, полезный для обоих партнёров. Симбиотическое питание растений наблюдается, например, у азотфиксирующих бактерий, поселяющихся в клубеньках на корнях бобовых растений, у шляпочных грибов, гифы которых проникают в корневые ткани древесных растений и образуют микоризу, а также у лишайников, представляющих собой группу грибов, находящихся в постоянном сожительстве с водорослями.
Некоторые растения могут использовать азот животных, которых они отлавливают (так называемые «хищные растения) . Это росянки, непентес, альдрованда пузырчатая. Большая часть растений способна усваивать углерод из углекислого газа, восстанавливая его до органических соединений. Этот тип питания называется автотрофным. Он свойствен всем высшим зелёным растениям, а также водорослям, некоторым бактериям. Восстановление CO2 до органических соединений требует затрат энергии либо за счёт поглощаемого солнечного света (фотосинтетики) , либо за счёт окисления восстановленных соединений, поглощаемых из внешней среды (хемосинтетики) .
автотрофы — получают органические соединения только путем фотосинтеза, гетеротрофы — получают органические соединения из других растений (животных) , или паразиты и хищники соответственно, и симбионты — получают органические соединения в ходе симбиоза с растениями (грибами, бактериями)
Источник
6. Питание растений. Типы и виды питания растений.
Питание – это поступление минеральных веществ из окружающей среды в растение, где они используются для синтеза сложных органических соединений. Все задачи, по мнению Тимирязева, сводятся к определению и строгому выполнению условий питания растений.
1) Автотрофный – самостоятельное поглощение неорганических веществ и первичный синтез необходимых органических веществ.
2) Симбиотрофный – высшее растение тесно сожительствует с другими организмами (симбионтами)
наблюдается взаимное использование продуктов для питания.
— микотрофный (растение + грибы)
— бактериотрофный (растение + бактерии) особое значение Rhizobium + растение
Растения питаются через листья (воздушное питание) и через корни (корневое питание).
Воздушное питание = фотосинтез = ассимиляция СО2. Корневое – усвоение корнями воды и минеральных солей, а также незначительного количества органических веществ (Витамины, аминокислоты и др.) Эти виды питания тесно связаны, нарушение одного вызывает снижение интенсивности другого.
7. Химический состав растений. Органические соединения сухого вещества растений, их роль в формировании качества продукции сельскохозяйственных культур.
Ткани растений состоят из воды и сухого вещества. Вегетативные органы с/х культур содержат 70-95% воды. Соотношение воды и сухого вещества неодинаково. Например: плоды томата, огурца 92-96% воды, картофель и свекла 75-80%, зерно злаков 12-15%.
Вода играет важную роль в жизни растения, во многом определяет уровень продуктивности с/х культур. Вода, составляя значительную массу растения, выполняет структурообразующую роль, является универсальным растворителем, активно участвующим в биохимических реакциях, регулирует тепловой баланс. Состав и количество сухого вещества определяет урожайность и качество продукции. Сухое вещество на 95% состоит из органического вещества и на 5% из минеральных солей. Органическое вещество образовано четырьмя элементами органогенами: С (45%), H (6,5), O (42%), N (1,5%).
Усваиваются органогены (кроме N) в процессе воздушного питания, следовательно, недостатка в них растение не испытывают. Ценность продукции зависит от содержания различных органических соединений. Зерновые и зернобобовые выращиваются ради белка и крахмала. Главный компонент сухого вещества картофеля – крахмал, сахарной свеклы – сахароза, масличных – масла, прядильных – клетчатка. Качество продукции овощных и плодово-ягодных культур определяется содержанием органических кислот.
Содержание органических веществ в составе сухого вещества во многом зависит от условий минерального питания растений, грамотно применяя удобрения можно создать условия питания соответствующие накоплению в продукции необходимых органических соединений. Например: усиление азотного питания повышает содержание белка в зерне и кормах. Фосфорно-калийные удобрения способствуют накоплению крахмала (картофель), сахара (свекла), жиров (масличные). Не сбалансированное питание приводит к ухудшению качества продукции, избыточное применение азота снижает количество крахмала в картофеле, сахара в свекле, ослабляет устойчивость растений к вредителям.
8. Химический состав растений. Макро-, микро- и ультрамикроэлементы, необходимость их для растений. Роль зольных элементов в формировании качества продукции сельскохозяйственных культур.
Классификация химических элементов по содержанию в растениях:
1) Макроэлементы (10-10-2 % на сухое вещество)
3) Ультрамикроэлементы (10-6-10-8 %)
Углерод (С), кислород (О), водород (Н), азот (N), фосфор (Р), калий (К), кальций (Са), магний (Mg), сера (S), железо (Fe), натрий (Na), хлор (Cl).
Марганец (Mn), цинк (Zn), молибден (Мо), медь (Cu), бор (В), ванадий (V), кобальт (Со), йод (I).
При их недостатке растения не могут нормально развиваться. Чаще содержание этих элементов выражается в мг/кг сухого вещества.
В отношении элементов проявляющих металлические свойства при содержании их в растениях и окружающей среде в значительных количествах используют термин – тяжелые металлы. Поэтому неправильное применение микроэлементов может привести к загрязнению окружающей среды.
Физиологическая функция ультрамикроэлементов до сих пор не выяснена из-за слабой изученности вопроса. К ним относятся Ag, Au, Ra, Ac и т.д.
При сжигании растений можно выделить зольные элементы, на долю которых приходится около 5% сухого вещества: P, K, Ca, Mg и т.д. Таким образом азот и зольные элементы применяемые в качестве удобрений составляют всего 6,5% сухого вещества. Всего в растениях найдено около 80 элементов, вполне вероятно, что найдется и больше. Не все 80 нужны растению.
Условия, при которых химический элемент считается необходимым для растений:
1) Его отсутствие не позволяет растению завершить свой жизненный цикл
2) Недостаток элемента вызывает специфические нарушения жизнедеятельности растения
3) Элемент непосредственно участвует в процессах превращения веществ и энергии
Выделяются условно необходимые в отношении которых имеются данные о положительном действии, но их роль окончательно не доказана.
Перечень необходимых растениям химических элементов:
Углерод (С), кислород (О), водород (Н), азот (N), калий (К), кальций (Са), фосфор (Р), магний (Mg), сера (S), железо (Fe), натрий (Na), хлор (Cl), марганец (Mn), цинк (Zn), молибден (Мо), медь (Cu), бор (В), ванадий (V), кобальт (Со), йод (I).
Перечень условно необходимых растениям химических элементов:
Кремний (Si), алюминий (Al), хром (Cr), стронций (Sr), титан (Ti), никель (Ni), свинец (Pb), литий (Li), фтор (F), кадмий (Cd), селен (Se), серебро (Ag).
Содержание зольных элементов в растениях, также как количество органических веществ определяет качество продукции. Сбалансированность минерального питания имеет большое значение для животных.
Пример: один из показателей качества кормов является отношение К/Са+Мg которое должно быть около 2,2. Нарушение этого соотношения вызывает болезнь скота. Качество продуктов питания и кормов зависит также и от содержания микроэлементов. Если содержание необходимых минеральных веществ в продукции низкое, то добиться его повышения можно применением удобрений либо в ведение в кормовые рационы минеральных солей.
Пример: почвы Пермского края бедны йодом, соответственно с/х продукция содержит недостаточно йода. Использование йодных удобрений не распространено, поэтому нужно обогащать йодом продукты питания (хлеб, соль) или применять медицинские препараты, содержащие данный элемент. Причиной снижения качества продукции может служить и избыток минеральных веществ (нитраты, тяжелые металлы) который может быть следствием неправильного применения удобрений.
Источник