Ткань растения растущая всю жизнь

Образовательные ткани

Общие представления о меристемах. Растение растет всю жизнь. Длительный рост с образованием новых органов и тканей — характерная черта, отличающая растения от животных. Такой рост возможен благодаря наличию меристем.

Меристемы состоят из недифференцированных и по внешнему виду одинаковых клеток, способных многократно делиться. Возникающие из меристем клетки дифференцируются, т.е. становятся различными и дают начало всем тканям и органам растения.

Меристемы могут сохраняться очень долго, в течение всей жизни растения (у ряда деревьев тысячи лет), так как содержат некоторое число инициальных клеток (инициалей), сохраняющих меристематический характер на протяжении всего своего существования и способных делиться неопределенное число раз. Именно от этих инициалей ведет начало все тело растения. Остальные клетки меристемы являются производными от инициалей; они делятся ограниченное число раз, после чего прекращают делиться и дифференцируются в клетки постоянных тканей.

Распределение меристем в теле растения. У высших растений характерное распределение меристем устанавливается очень рано, уже на первых этапах развития организма. Оплодотворенная яйцеклетка делится и образует предзародыш (проэмбрио), составленный эмбриональными, т.е. меристематическими, клетками. На двух противоположных полюсах — на кончике зародышевого корешка и в первичной почечке — локализуются группы инициальных клеток, формирующих верхушечные, или апикальные (от лат. арeх — вершина) меристемы. Эти меристемы наращивают корень и побег в длину. При ветвлении каждый боковой побег и каждый боковой корень также обязательно имеют верхушечные меристемы со своими инициалями.

Боковые (латеральные: лат. lateralis — боковой) меристемы в осевых органах (стеблях, корнях) образуют цилиндрические слои, на поперечных разрезах имеющие вид колец.

Одни из боковых меристем возникают непосредственно под апексами в тесной связи с апикальными меристемами. Такие меристемы относят к первичным (прокамбий, перицикл). Другие боковые меристемы (камбий, феллоген) возникают позже, и на этом основании их считают вторичными, хотя разграничение меристем на первичные и вторичные в значительной мере условно. В наиболее типичном случае вторичные меристемы, например феллоген, возникают из клеток постоянной ткани путем их дедифференциации, т.е. обратного преобразования в меристему. Часто (например, у большинства однодольных растений) вторичные меристемы отсутствуют, и тогда все тело растения образовано одними лишь первичными меристемами.

Молодые ткани формируются из апикальных меристем, как правило, акропетально, т.е. их развитие идет от основания к верхушке. Акропетальное развитие яснее выражено в корнях, в побегах же оно часто нарушается вследствие деятельности вставочных меристем.

Вставочные, или интеркалярные (от лат. intercalatio — вставка, добавка), меристемы представляют собой активно растущие меристематические участки, расположенные большей частью в основаниях междоузлий. Их можно назвать остаточными, поскольку они происходят от верхушечных меристем, но их преобразование в постоянные ткани задерживается по сравнению с соседними участками стебля.

Читайте также:  Фотосинтез роль зеленых растений

От верхушечных и боковых меристем вставочные отличаются тем, что, во-первых, в них имеются некоторые дифференцированные элементы (например, проводящие), а во-вторых, в них нет инициальных клеток. Поэтому вставочные меристемы имеют временный характер и в конце концов превращаются в постоянные ткани.

Раневые (травматические) меристемы, как показывает название, возникают при залечивании поврежденных тканей и органов, например, морозобойных трещин на стволах деревьев. Раневая меристема около пораненного места чаще всего возникает путем дедифференциации живых клеток с последующим образованием защитной пробки или других тканей.

Цитологическая характеристика меристем. Типичные признаки наиболее отчетливо выражены в верхушечных меристемах. Эти меристемы составлены изодиаметрическими многогранными клетками, не разделенными межклетниками. Их оболочки тонки, содержат мало целлюлозы и способны растягиваться.

Полость каждой клетки заполнена густой цитоплазмой, с относительно крупным ядром, занимающим центральное положение. Выражение «относительно крупное ядро» имеет в виду отношение объема ядра к объему всей клетки. Величина, определяемая этим отношением, у меристематической клетки значительно больше, чем у полностью выросшей клетки, поскольку объем клетки в процессе роста сильно увеличивается, а объем ядра почти не меняется.

Под световым микроскопом цитоплазма меристематических клеток имеет вид однородной прозрачной массы с тонкой зернистостью. Различные органеллы, погруженные в гиалоплазму, имеют почти одинаковый с ней показатель преломления света, а величина их находится или ниже разрешающей способности (рибосомы, диктиосомы, эндоплазматический ретикулум), или на самой границе разрешения (митохондрии, пластиды) светового микроскопа. Вакуоли под световым микроскопом обычно не заметны. Электронный микроскоп позволяет отметить большое число рибосом и митохондрий, что связано с энергичным синтезом белков и других веществ в меристеме.

Рост клеток меристемы. Клетки, возникшие в меристеме, делятся несколько раз, дифференцируются в клетки тех или иных постоянных тканей и оттесняются вновь образующимися клетками. Таким образом, каждая клетка, производная от инициали пребывает в составе меристемы ограниченный срок. Теряя меристематический характер, она испытывает ряд превращений. Пока ее оболочка тонка и податлива к растяжению, она увеличивает свой объем и принимает размеры и форму, характерные для ее окончательного (дефинитивного) состояния. Часто оболочка растягивается очень неравномерно, и тогда возникает клетка, сильно вытянутая в одном направлении или снабженная выступами и ответвлениями. Такое неравномерное растяжение объясняется активным влиянием живых протопластов на растяжимость различных участков оболочки.

Оболочки соседних клеток обычно растягиваются согласованно и не скользят (не сдвигаются относительно друг друга). Такой согласованный рост обеспечивает сохранность плазматических связей (плазмодесм) между ними. Поскольку протопласты соседних клеток, связанные между собой плазмодесмами, образуют единую живую систему — симпласт, такой согласованный рост, при котором оболочки соседних клеток не сдвигаются относительно друг друга, носит название симпластшеского.

Читайте также:  Какие растения могут расти дома

Увеличение размеров клетки связано с сильным оводнением. Вакуоли увеличиваются в объеме, они сливаются, и, наконец, образуется одна большая вакуоль, окруженная постенным слоем цитоплазмы.

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:

Источник

Задания части 2 ЕГЭ по теме «Ткани растений»

Зубр

1. Какие ткани образуют листовую пластинку у сирени? Объясните, какие функции они выполняют в листе.

1) покровная ткань – обеспечивает защиту и проведение солнечных лучей, участвует в газообмене и испарении воды;
2) основная фотосинтезирующая ткань – обеспечивает синтез органических веществ (фотосинтез);
3) проводящая ткань – обеспечивает проведение воды в лист и отток из листа органических веществ;
4) механическая ткань – придает прочность листовой пластинке

2. У растений различают простые и сложные ткани. Простые ткани состоят из практически однородных по строению клеток, выполняющих одну и ту же функцию. Сложные – из разных по строению, форме и выполняемой функции клеток. Объясните, почему к сложным тканям относят покровную часть листа и луб, а к простым тканям – основную ткань (мякоть) листа.

1) покровная ткань листа сложная, так как основная часть ее клеток не содержит хлоропластов, а замыкающие клетки устьиц отличаются по форме и имеют хлоропласты (некоторые клетки образуют волоски);
2) луб – сложная ткань, так как имеет разные по строению элементы: это ситовидные трубки и механические волокна;
3) основная ткань листа – простая ткань, так как ее клетки имеют одинаковое строение, содержат много хлоропластов, фотосинтезируют

3. Какие структуры листа обозначены на рисунке цифрами 5, 6, 7? Какие функции они выполняют?

1) Цифрой 5 обозначены сосуды ксилемы, они обеспечивают транспорт воды и минеральных веществ в листья.
2) Цифрой 6 обозначены волокна механической ткани, придающие листу прочность.
3) Цифрой 7 обозначены ситовидные трубки флоэмы, они обеспечивают транспорт органических веществ из листа в другие органы.

4. Какие ткани обеспечивают рост растения в длину и в толщину?

1) Рост растения обеспечивают образовательные ткани (меристемы).
2) Рост растения в длину обеспечивают верхушечные меристемы побега и корня.
3) У злаков рост в длину обеспечивают вставочные меристемы.
4) Рост растения в толщину обеспечивает камбий.

5. Растения растут в течение всей жизни. Какая ткань обеспечивает рост органов растения, каковы строение и жизнедеятельность её клеток? В чём особенность роста стебля злаковых растений? Ответ поясните.

1) рост органов растения обеспечивает образовательная ткань (меристема);
2) клетки меристемы имеют тонкие оболочки, мелкие вакуоли, способны к постоянному делению и дифференциации в другие виды тканей;
3) у злаковых рост вставочный, так как образовательная ткань находится в междоузлиях

Читайте также:  Лампа для подсветки комнатных растений

6. У большинства древесных растений по мере роста молодых побегов зеленый цвет их стеблей сменяется бурым, а осенью начинается листопад. Оба явления сезонные и связаны с накоплением в клеточных оболочках жироподобного вещества суберина. В результате этого процесса клетки опробковевают – становятся мёртвыми, толстостенными и заполняются воздухом, образуя слой пробки. Какие функции выполняет пробка в стеблях растений и при листопаде? Укажите не менее пяти функций.

1) пробка защищает от потери влаги (обеспечивает непроницаемость для воды);
2) пробка обеспечивает механическую защиту;
3) пробка предохраняет от резких колебаний температуры (уменьшает теплопроводность);
4) пробка предохраняет от проникновения болезнетворных микроорганизмов;
5) пробка обеспечивает газообмен (через чечевички);
6) при листопаде пробка образует отделительный слой в основании листа (способствует отделению листа от стебля)

7. Какое значение в стебле цветковых растений имеют механическая ткань? Сравните степень развития механической ткани у наземных и вторичноводных цветковых растений. Ответ поясните для обеих экологических групп.

1) механическая ткань поддерживает тело растения в вертикальном положении (поддержка листьев, цветков, побегов);
2) у наземных растений механическая ткань развита хорошо;
3) у вторичноводных растений механическая ткань развита слабо;
4) воздух имеет более низкую плотность, чем вода (или наоборот), поэтому в воздушной среде необходима развитая механическая ткань (вода поддерживает растение за счет выталкивания).

8. У покрытосеменных растений имеются различные типы тканей, которые делят на две группы: образовательные и постоянные. Каковы особенности строения и функционирования клеток образовательных тканей? Укажите места расположения образовательных тканей при любом типе роста в длину осевых вегетативных органов.

1) клетки мелкие (кубические, изодиаметрические, округлые);
2) клетки тонкостенные (имеют мелкие вакуоли);
3) клетки способны к многократному делению;
4) в кончике корня (зоне деления);
5) в верхушке побега (почке, конусе нарастания);
6) в междоузлиях.

9. Почему такие анатомические особенности травянистых растений, как густая сеть жилок и сильно развитая механическая ткань позволяют им адаптироваться к засушливым условиям? Ответ поясните.

1) жилки содержат проводящую ткань (сосуды; ксилему)
ИЛИ 1) жилки содержат механические ткани;
2) густая сеть жилок обеспечивает более интенсивное движение
воды внутри растения (эффективное распределение воды)
ИЛИ 2) густая сеть жилок обеспечивает механическую прочность
листа (препятствует увяданию);
значение развитых механических тканей:
3) в засушливых условиях уменьшается тургор в клетках растений;
4) сильное развитие механических тканей позволяет избежать увядания растений.

Источник

Оцените статью