Трансплантация целых ядер микроклональное размножение растений использование рекомбинантных плазмид

Трансплантация целых ядер микроклональное размножение растений использование рекомбинантных плазмид

Установите соответствие между приёмами и методами биотехнологии: для этого к каждому элементу первого столбца подберите соответствующий элемент из второго столбца.

А) работа с каллусной тканью

Б) введение плазмид в бактериальные

В) гибридизация соматических клеток

Г) трансплантация ядер клеток

Д) получение рекомбинантной ДНК и РНК

Запишите в таблицу выбранные цифры под соответствующими буквами:

1) клеточная инженерия

А) Культура изолированных тканей обычно бывает представлена каллусными или реже – опухолевыми тканями. Оторванная от коллектива себе подобных клетка в пробирке сохраняет «память» — генетическую информацию, заложенную родителями. Но специализацию она утрачивает и образует при делении нечто аморфное, напоминающее по форме морскую губку – каллус– это ткань, которая возникает не только в пробирке, но и в естественных условиях при поранении растения.

Регенерации полноценных растений из каллуса добиваются в принципе двумя путями: дифференциацией побегов и корней посредством изменения соотношения гормонов цитокинина и ауксина или образованием эмбриоидов. Этот соматический (асексуальный) эмбриогенез впервые был прослежен к 1959 г. у моркови; со временем его стали применять при производстве жизнеспособных растений у разных видов.

В) Гибридизация соматических клеток

Создание неполовых гибридов путем слияния изолированных протопластов, полученных из соматических клеток. Этот метод позволяет скрещивать филогенетически отдаленные виды растений, которые невозможно скрестить обычным половым путем, вызывать слияние трех и более родительских клеток, получать асимметричные гибриды, несущие весь генный набор одного из родителей наряду с несколькими хромосомами или генами, или только органеллами и цитоплазмой другого. Гибридизация соматических клеток дает возможность не только соединить в одном ядре гены далеких видов растений, но и сочетать в гибридной клетке цитоплазматические гены партнеров.

Читайте также:  Какие растения снимают давление

Г) Трансплантация ядер клеток

В последнее время разработано несколько эффективных методов, позволяющих изучать взаимоотношения ядра и цитоплазмы.

Наиболее важное значение, по-видимому, имеет метод пересадки ядра одной клетки в цитоплазму другой клетки, из которой предварительно удалили собственное ядро. Наблюдения за поведением таких клеток позволяют изучать влияние объединения ядра и цитоплазмы разных клеток на поведение обоих компонентов.

Хотя большинство признаков ядерно-цитоплазматических гибридов, несомненно, определяется ядром, некоторые из них в отдельных случаях могут контролироваться цитоплазмой и сохраняться в ряду многих клеточных поколений.

Б) введение плазмид в бактериальные клетки.

По размеру плазмиды меньше бактериальных хромосом и содержат от 8 до 200 тыс. нуклеотидных пар. В одной клетке может находиться от 1—2 до нескольких десятков плазмид. Это число постоянно. Плазмиды реплицируются (размножаются) независимо от бактериальной хромосомы. Но некоторые плазмиды, так называемые эписомы, могут встраиваться в хромосому и реплицироваться вместе с ней. Транскрипция и трансляция генетического материала плазмид идут с помощью клеточных механизмов, т. е. так же, как у вирусов. Плазмиды передаются при делении дочерним клеткам, а также могут попадать в бактерии при клеточных контактах. Плазмиды несут от 2—3 до 90 генов, которые придают клеткам характерные свойства, например: способность передавать хромосомную ДНК от одной бактерии к другой, вырабатывать белки−яды, губительные для других бактерий. Ученые разработали методы выделения и введения плазмид в бактериальные клетки. Можно, используя специальные ферменты, разрезать плазмиды, встраивать в них новые гены и сшивать молекулы. Такие плазмиды служат для переноса генетической информации (т. е. являются векторами), в генной инженерии.

Д) Получение рекомбинантной ДНК и РНК.

Суть конструирования рекомбинантных ДНК заключается во встраивании фрагментов ДНК, среди которых находится интересующий нас участок ДНК, в так называемые векторные молекулы ДНК (или просто векторы) — плазмидные или вирусные ДНК, которые могут быть перенесены в клетки про- или эукариот и там автономно репли-цироваться. На следующем этапе проводится отбор тех клеток, которые несут в себе рекомбинантные ДНК (с помощью маркерных признаков, которыми обладает сам вектор), и затем индивидуальных клонов с интересующим нас сегментом ДНК (используя признаки или пробы, специфичные для данного гена или участка ДНК).

Читайте также:  Тещин язык растение желтеет

Получение рекомбинантных РНК обычно осуществляют методами ферментативного или химического лигирования РНК.

Источник

Оцените статью