3. Водный обмен
Вода является главной составной частью растений. Ее содержание неодинаково в разных органах растения (так, в листьях салата она составляет 95 %, а в сухих семенах — не более 10 % от массы ткани) и зависит от условий внешней среды, вида и возраста растения. Для своего нормального существования растение должно содержать определенное количество воды. Два процесса – поступление и испарение воды – называют водным балансом.
Вода — это среда, в которой протекают процессы обмена веществ. Все реакции гидролиза, окислительно-восстановительные реакции идут с участием воды. Вода служит источником кислорода, выделяемого при фотосинтезе, и водорода, используемого для восстановления углекислого газа. Вода поддерживает конформацию молекул белка, устойчивость структур цитоплазмы и оболочки клеток в упругом состоянии. С изменением тургорного давления связаны некоторые движения частей растений.
Заряды в молекуле воды распределены неравномерно, так как атом кислорода воды оттягивает электроны от атомов водорода. Поэтому молекула воды представляет собой диполь: один полюс молекулы заряжен положительно, а другой отрицательно. Благодаря этому молекулы воды могут ассоциировать друг с другом, ионами и белковыми молекулами. Вода участвует в поглощении и транспорте веществ, так как является хорошим растворителем. Гидратные оболочки, окружающие ионы, ограничивают их взаимодействие.
Вода обладает высокой теплоемкостью — 1кал/град, что позволяет растению воспринимать изменения температуры окружающей среды в смягченном виде. Испарение воды растениями — транспирация служит основным средством терморегуляции у растений. Растения испаряют очень много воды. Большой расход воды связан с тем, что растения обладают значительной листовой поверхностью, необходимой для поглощения углекислого газа, содержание которого в воздухе незначительно (0,032 %).
3.2. Формы почвенной влаги
По степени доступности для растения различают следующие формы почвенной влаги. Гравитационная вода заполняет промежутки между частицами почвы и хорошо доступна растениям. Однако она быстро испаряется и легко стекает в нижние горизонты почвы под влиянием силы тяжести, вследствие чего бывает в почве лишь после дождей. Капиллярная вода заполняет капилляры в почвенных частицах. Эта вода хорошо доступна для растений, она удерживается в капиллярах силами поверхностного натяжения и поэтому не только не стекает вниз, но и поднимается вверх от грунтовых вод. Пленочная вода окружает коллоидные частицы почвы. Вода из периферических слоев гидратационных оболочек может поглощаться корнями. Гигроскопическая вода адсорбируется сухой почвой при помещении ее в атмосферу с 95 %-ной относительной влажностью. Этот тонкий слой молекул воды удерживается с такой силой, что их водный потенциал достигает -1000 бар и она недоступна для растений.
Количество почвенной воды в процентах, при котором растение впадает в устойчивое завядание, называют коэффициентом или влажностью завядания. Завядание растений разных видов может начинаться при одной и той же влажности, но промежуток времени от завядания растения до его гибели (интервал завядания) у растений может быть различным. Так, для растений бобов он составляет несколько суток, а для растений проса — несколько недель. Завядание начинается позже у растений с более отрицательным осмотическим потенциалом и меньшей скоростью транспирации.
«Мертвый запас» влаги в почве — это количество воды полностью недоступной растению. Он зависит от механического состава почвы. Чем больше глинистых частиц в почве, тем больше «мертвый запас» влаги. Количество доступной для растения воды представляет собой разность между полевой влагоемкостью (максимальное количество воды, удерживаемое почвой) и «мертвым запасом».
Источник
Раздел 2. Водный обмен растений
Растительные ткани содержат большое количество воды (в среднем 75…90 % массы растения). Особенно богаты водой сочные плоды, молодые корни и молодые листья (работа 10). Активное проявление жизнедеятельности без воды вообще невозможно. Это объясняется свойствами и ролью воды в живых клетках.
Вода в растениях находится как в свободном (с неизменными физико-химическими свойствами), так и связном состоянии (с измененными физико-химическими свойствами). Свободная вода содержится в клеточных стенках и проводящей системе растений. Связная вода составляет 10…15 % общего её содержания. Осмотически связная вода содержится в вакуолях клеток, коллоидно связная – в цитоплазме, каппилярно связная – в клеточных стенках, ксилеме, флоэме.
Вода обладает важными для процессов жизнедеятельности свойствами: высокой теплопроводностью, теплоемкостью и теплотой парообразования (охлаждение растения при транспирации); высокой растворяющей способностью; способностью диссоциировать на ионы (гидратирует белки, полисахариды, фосфолипиды, биоколлоиды и обеспечивают их пространственную конфигурацию и ориентацию в клеточных структурах); высокой реакционной способностью (участие в окислительно-восстановительных реакциях, гидролизе); электропроводностью (электрические свойства клеток).
Водный обмен растений складывается из процессов поглощения, передвижения и испарения воды.
Основным механизмом поглощения воды клетками является осмос (работа 11). Благодаря осмосу в клетках поддерживается тургорное давление, возникают другие осмотические явления (работа 12).
Важнейшим термодинамическим показателем, характеризующим состояние воды в растениях, является водный потенциал (работа 13), который являются алгебраической суммой четырех компонентов – осмотического потенциала (работа 14), матричного потенциала, потенциала давления и гравитационного потенциала. Градиент водного потенциала определяет направление транспорта воды в клетках, тканях, в системе почва-растения-атмосфера.
Функцию поглощения воды выполняет корневая система. Поглотительная способность корней зависит от их ростовой активности, степени ветвления, общей и рабочей адсорбирующей поверхности, обеспеченности органическими веществами. Основными внешними факторами, влияющими на поглощение воды корнями, являются температура и аэрация почвы.
Восходящий транспорт воды в растениях осуществляется под действием двух концевых двигателей: нижнего (корневое давление) и верхнего (транспирация). Вода передвигается как по живым клеткам (радиальный транспорт в корне, транспорт по клеткам листа), так и по проводящей системе (ксилеме). Направленный транспорт воды от корневых волосков к сосудам (радиальный транспорт в корне) способствует возникновению корневого давления. Проявлением корневого давления является плач растений – вытекание ксилемного сока из поврежденных стеблей или веток, и гуттация – выделение капельно-жидкой влаги в условиях высокой влажности воздуха через гидатоды, расположенные на кончиках или зубчиках листа.
Более 99 % поглощенной растениями воды испаряется. Процесс испарения воды растениями называется транспирацией. Главным органом транспирации является лист. Транспирация имеет важное физиологическое значение – обеспечивает охлаждение растений, способствует газообмену, транспорту минеральных веществ, является верхним концевым двигателем восходящего тока.
Для количественной характеристики водообмена используется ряд показателей: интенсивность транспирации (работы 15, 16, 18), относительная транспирация (работа 17), продуктивность транспирации, транспирационный коэффициент, водный дефицит (работа 19).
В посевах сельскохозяйственных культур эффективность использования воды характеризует эвапотранспирационный коэффициент, или коэффициент водопотребления, который рассчитывается как отношение эвапотранспирации (суммарного расхода воды с 1 га посева или насаждения за вегетацию) к созданной биомассе или хозяйственно-полезному урожаю.
Регуляция водообмена растений является одним из условий оптимизации их роста, развития и повышения продуктивности.
Источник