Пластиды: виды, строение и функции. Хлоропласты, хромопласты, лейкопласты
Пластиды — органоиды, специфичные для клеток растений (они имеются в клетках всех растений, за исключением большинства бактерий, грибов и некоторых водорослей).
В клетках высших растений находится обычно от 10 до 200 пластид размером 3-10мкм, чаще всего имеющих форму двояковыпуклой линзы. У водорослей зеленые пластиды, называемые хроматофорами, очень разнообразны по форме и величине. Они могут иметь звездчатую, лентовидную, сетчатую и другие формы.
- Бесцветные пластиды — лейкопласты;
- окрашенные — хлоропласты (зеленого цвета);
- окрашенные — хромопласты (желтого, красного и других цветов).
Эти виды пластид до известной степени способны превращаться друг в друга — лейкопласты при накоплении хлорофилла переходят в хлоропласты, а последние при появлении красных, бурых и других пигментов — в хромопласты.
Строение и функции хлоропластов
Хлоропласты — зеленые пластиды, содержащие зеленый пигмент — хлорофилл.
Основная функция хлоропласт — фотосинтез.
В хлоропластах есть свои рибосомы, ДНК, РНК, включения жира, зерна крахмала. Снаружи хлоропласта покрыты двумя белково-липидными мембранами, а в их полужидкую строму (основное вещество) погружены мелкие тельца — граны и мембранные каналы.
Граны (размером около 1мкм) — пакеты круглых плоских мешочков (тилакоидов), сложенных подобно столбику монет. Располагаются они перпендикулярно поверхности хлоропласта. Тилакоиды соседних гран соединены между собой мембранными каналами, образуя единую систему. Число гран в хлоропластах различно. Например, в клетках шпината каждый хлоропласт содержит 40-60 гран.
Хлоропласты внутри клетки могут двигаться пассивно, увлекаемые током цитоплазмы, либо активно перемещаться с места на место.
- Если свет очень интенсивен, они поворачиваются ребром к ярким лучам солнца и выстраиваются вдоль стенок, параллельных свету.
- При слабом освещении, хлоропласты перемещаются на стенки клетки, обращенные к свету, и поворачиваются к нему своей большой поверхностью.
- При средней освещенности они занимают среднее положение.
Этим достигаются наиболее благоприятные для процесса фотосинтеза условия освещения.
Хлорофилл
В гранах пластид растительной клетки содержится хлорофилл, упакованный с белковыми и фосфолипидными молекулами так, чтобы обеспечить способность улавливать световую энергию.
Молекула хлорофилла очень сходна с молекулой гемоглобина и отличается главным образом тем, что расположенный в центре молекулы гемоглобина атом железа заменен в хлорофилле на атом магния.
В природе встречается четыре типа хлорофилла: a, b, c, d.
Хлорофиллы a и b содержат высшие растения и зеленые водоросли, диатомовые водоросли содержат a и c, красные — a и d.
Лучше других изучены хлорофиллы a и b (их впервые разделил русский ученый М.С.Цвет в начале XXв.). Кроме них существуют четыре вида бактериохлорофиллов — зеленых пигментов пурпурных и зеленых бактерий: a, b, c, d.
Большинство фотосинтезирующих бактерий содержат бактериохлорофилл a, некоторые — бактериохлорофилл b, зеленые бактерии — c и d.
Хлорофилл обладает способностью очень эффективно поглощать солнечную энергию и передавать ее другим молекулам, что является его главной функцией. Благодаря этой способности хлорофилл — единственная структура на Земле, которая обеспечивает процесс фотосинтеза.
Главная функция хлорофилла в растениях — поглощение энергии света и передача ее другим клеткам.
Пластидам, так же, как и митохондриям, свойственна до некоторой степени автономность внутри клетки. Они размножаются путем деления.
Наряду с фотосинтезом, в пластидах происходит процесс биосинтеза белка. Благодаря содержанию ДНК пластиды играют определенную роль в передаче признаков по наследству (цитоплазматическая наследственность).
Строение и функции хромопластов
Хромопласты относятся к одному из трех видов пластид высших растений. Это небольших размеров, внутриклеточные органеллы.
Хромопласты имеют различный окрас: желтый, красный, коричневый. Они придают характерный цвет созревшим плодам, цветкам, осенней листве. Это необходимо для привлечения насекомых-опылителей и животных, которые питаются плодами и разносят семена на дальние расстояния.
Структура хромопласта похожа на другие пластиды. Их двух оболочек внутренняя развита слабо, иногда вовсе отсутствует. В ограниченном пространстве расположена белковая строма, ДНК и пигментные вещества (каротиноиды).
Каротиноиды – это жирорастворимые пигменты, которые накапливаются в виде кристаллов.
Форма хромопластов очень разнообразна: овальная, многоугольная, игольчатая, серповидная.
Роль хромопластов в жизни растительной клетки до конца не выяснена. Исследователи предполагают, что пигментные вещества играют важную роль в окислительно-восстановительных процессах, необходимы для размножения и физиологичного развития клетки.
Строение и функции лейкопластов
Лейкопласты — это органоиды клетки, в которых накапливаются питательные вещества. Органеллы имеют две оболочки: гладкую наружную и внутреннюю с несколькими выступами.
Лейкопласты на свету превращаются в хлоропласты (к примеру зеленые клубни картофеля), в обычном состоянии они бесцветны.
Форма лейкопластов шаровидная, правильная. Они находятся в запасающей ткани растений, которая заполняет мягкие части: сердцевину стебля, корня, луковиц, листьев.
Функции лейкопластов зависят от их вида (в зависимости от накапливаемого питательного вещества).
- Амилопласты накапливают крахмал, встречаются во всех растениях, так как углеводы основной продукт питания растительной клетки. Некоторые лейкопласты полностью наполнены крахмалом, их называют крахмальными зернами.
- Элайопласты продуцируют и запасают жиры.
- Протеинопласты содержат белковые вещества.
Лейкопласты также служат ферментной субстанцией. Под действием ферментов быстрее протекают химические реакции. А в неблагоприятный жизненный период, когда процессы фотосинтеза не осуществляются, они расщепляют полисахариды до простых углеводов, которые необходимы растениям для выживания.
В лейкопластах не может происходить фотосинтез, потому что они не содержат гран и пигментов.
Луковицы растений, в которых содержится много лейкопластов, могут переносить длительные периоды засухи, низкую температуру, жару. Это связано с большими запасами воды и питательных веществ в органеллах.
Предшественниками всех пластид является пропластиды, небольшие органоиды. Допускают, что лейко — и хлоропласты способны трансформироваться в другие виды. В конечном итоге после выполнения своих функций хлоропласты и лейкопласты становятся хромопластами — это последняя стадия развития пластид.
Важно знать! Одновременно в клетке растения может находиться только один вид пластид.
Сводная таблица строения и функций пластид
Свойства | Хлоропласты | Хромопласты | Лейкопласты |
---|---|---|---|
Строение | Двухмембранная органелла, с гранами и мембранными канальцами | Органелла с не развитой внутренней мембранной системой | Мелкие органеллы, находятся в частях растения, скрытых от света |
Окрас | Зеленые | Разноцветные | Бесцветные |
Пигмент | Хлорофилл | Каротиноид | Отсутствует |
Форма | Округлая | Многоугольная | Шаровидная |
Функции | Фотосинтез | Привлечение потенциальных распространителей растений | Запас питательных веществ |
Заменимость | Переходят в хромопласты | Не изменяются, это последняя стадия развития пластид | Превращаются в хлоропласты и хромопласты |
Источник
Пластиды
Пластиды — это органоиды клеток растений и некоторых фотосинтезирующих простейших. У животных и грибов пластид нет.
Пластиды делятся на несколько типов. Наиболее важный и известный — хлоропласт, содержащий зеленый пигмент хлорофилл, который обеспечивает процесс фотосинтеза.
Другими видами пластид являются разноцветные хромопласты и бесцветные лейкопласты. Также выделяют амилопласты, липидопласты, протеинопласты, которые часто считают разновидностями лейкопластов.
Все виды пластид связаны между собой общим происхождением или возможным взаимопревращением. Пластиды развиваются из пропластид – более мелких органоидов меристематических клеток.
Строение пластид
Большинство пластид относится к двумембранным органоидам, у них есть внешняя и внутренняя мембраны. Однако встречаются организмы, чьи пластиды имеют четыре мембраны, что связано с особенностями их происхождения.
Во многих пластидах, особенно в хлоропластах, хорошо развита внутренняя мембранная система, формирующая такие структуры как тилакоиды, граны (стопки тилакоидов), ламелы – удлиненные тилакоиды, соединяющие соседние граны. Внутренне содержимое пластид обычно называют стромой. В ней помимо прочего находятся крахмальные зерна.
Считается, что в процессе эволюции пластиды появились аналогично митохондриям — путем внедрения в клетку-хозяина другой прокариотической клетки, способной в данном случае к фотосинтезу. Поэтому пластиды считают полуавтономными органеллами. Они могут делиться независимо от делений клетки, у них есть собственная ДНК, РНК, рибосомы прокариотического типа, т. е. собственный белоксинтезирующий аппарат. Это не значит, что в пластиды не поступают белки и РНК из цитоплазмы. Часть генов, управляющей их функционированием, находится как раз в ядре.
Функции пластид
Функции пластид зависят от их типа. Хлоропласты выполняют фотосинтезирующую функцию. В лейкопластах накапливаются запасные питательные вещества: крахмал в амилопластах, жиры в элайопластах (липидопластах), белки в протеинопластах.
Хромопласты, за счет содержащихся в них пигментов-каротиноидов, окрашивают различные части растений – цветки, плоды, корнеплоды, осенние листья и др. Яркий окрас часто служит своеобразным сигналом для животных-опылителей и распространителей плодов и семян.
В дегенерирующих зеленых частях растений хлоропласты превращаются в хромопласты. Пигмент хлорофилл разрушается, поэтому остальные пигменты, несмотря на малое количество, становятся в пластидах заметными и окрашивают туже листву в желто-красные оттенки.
Источник