Высота листа бинарного дерева

Python алгоритмы

Блог про алгоритмы и все что с ними связано. Основной инструмент реализации — Python.

Дай 10 !)

суббота, 30 июля 2011 г.

Бинарные деревья

Бинарное дерево представляет собой структуру, в которой каждый узел (или вершина) имеет не более двух узлов-потомков и в точности одного родителя. Самый верхний узел дерева является единственным узлом без родителей; он называется корневым узлом. Бинарное дерево
с N узлами имеет не меньше [log2N + 1] уровней (при максимально плотной упаковке узлов).
Если уровни дерева занумеровать, считая что корень лежит на уровне 1, то на уровне с номером К лежит 2 К-1 узел. У полного бинарного дерева с j уровнями (занумерованными от 1 до j) все листья лежат на уровне с номером j, и у каждого узла на уровнях с первого по j — 1
в точности два непосредственных потомка. В полном бинарном дереве с j уровнями 2 j — 1 узел.
*-Нравится статья? Кликни по рекламе! 🙂

Бинарные деревья поиска обычно применяются для реализации множеств и ассоциативных массивов. И применяются для быстрого поиска информации. Например в статье Двоичный (бинарный) поиск элемента в массиве мы искали во встроенной в Python структуре данных, типа list, а могли реализовать бинарное дерево. Двоичные деревья, как и связные списки, являются рекурсивными структурами.
Различные реализации одного и того же бинарного дерева

  • полное(расширенное) бинарное дерево — каждый узел, за исключением листьев, имеет по 2 дочерних узла;
  • идеальное бинарное дерево — это полное бинарное дерево, в котором все листья находятся на одной высоте;
  • сбалансированное бинарное дерево — это бинарное дерево, в котором высота 2-х поддеревьев для каждого узла отличается не более чем на 1. Глубина такого дерева вычисляется как двоичный логарифм log(n), где n — общее число узлов;
  • вырожденное дерево — дерево, в котором каждый узел имеет всего один дочерний узел, фактически это связный список;
  • бинарное поисковое дерево (BST) — бинарное дерево, в котором для каждого узла выполняется условие: все узлы в левом поддереве меньше, и все узлы в правом поддереве больше данного узла.
  1. сконструировать бинарное дерево таким образом, чтобы сумма путей была минимальной, так как это сокращает время вычислений для различных алгоритмов.
  2. сконструировать полное расширенное бинарное дерево таким образом, чтобы сумма произведений путей от корневого узла до листьев на значение листового узла была минимальной.
2 3 5 7 11 13 17 19 23 29 31 37 41 5 5 7 11 13 17 19 23 29 31 37 41 10 7 11 13 17 19 23 29 31 37 41 17 24 17 19 23 29 31 37 41 24 34 19 23 29 31 37 41 24 34 42 29 31 37 41 42 53 65 37 41 42 53 65 78 95 65 78 95 143 238

Более полную статью, по кодам Хаффмана читай в моей более ранней статье.

Читайте также:  Полировка дерева стальной ватой

Реализация:
До этого, в своих статьях я показывал силу функционального программирования Python.
Теперь, пришло время, показать ООП в действии, создав новую структуру данных Tree, состоящую из других структур, типа Node.
Сразу скажу, что код взят с сайта IBM с минимальными изменениями и дополнениями. С моей точки зрения данный класс является недееспособным с точки зрения добавления элементов,по причине того, что мы сами должны строить дерево, помня структуру у себя в голове, а ведь мы можем и ошибиться. И позже я напишу так, как мне кажется верным, где добавление элемента является рекурсивным проходом по дереву и поиску подходящего места. А пока, разберем, что есть:

class node: def __init__(self, data = None, left = None, right = None): self.data = data self.left = left self.right = right def __str__(self): return 'Node ['+str(self.data)+']' #/* класс, описывающий само дерево */ class Tree: def __init__(self): self.root = None #корень дерева # /* функция для добавления узла в дерево */ def newNode(self, data): return node(data,None,None)

Дальше, все функции расширяют класс Tree.

Высота бинарного дерева
Для определения высоты дерева потребуется пройти от корня сначала по левому поддереву, потом по правому, сравнить две этих высоты и выбрать максимальное значение. И не забыть к получившемуся значению прибавить единицу (корневой элемент). Мы реализуем её в привычном уже нам рекурсивном виде.

# /* функция для вычисления высоты дерева */ def height(self,node): if node==None: return 0 else: lheight = self.height(node.left) rheight = self.height(node.right) if lheight > rheight: return(lheight+1) else: return(rheight+1)

«Зеркальное» отражение бинарного дерева
Когда два дерева являются зеркальным отражением друг друга, то говорится, что они симметричны. Для получения «зеркальной» копии дерева сначала выполняется проверка на наличие у корня дерева дочерних узлов, и если эти узлы есть, то они меняются местами. Потом эти же действия рекурсивно повторяются для левого и правого дочерних узлов. Если существует только один дочерний узел, тогда можно переходить на один уровень ниже по дереву и продолжать.

# /* функция для зеркального отражения дерева */ def mirrorTree(self, node): if node.left and node.right: node.left,node.right=node.right,node.left self.mirrorTree(node.right) self.mirrorTree(node.left) else: if node.left==None and node.right: return self.mirrorTree(node.right) if node.right==None and node.left: return self.mirrorTree(node.left)

Проверка наличия узла в бинарном дереве
Нужно только учесть, что данная функция не работает для зеркального отображения дерева!

# /* функция для проверки наличия узла */ def lookup(self, node, target): if node == None:return 0 else: if target == node.data: return 1 else: if target < node.data: return self.lookup(node.left, target) else: return self.lookup(node.right, target)

Ширина бинарного дерева
Под шириной дерева понимается максимальное количество узлов, которые расположены на одной высоте. Чтобы определить ширину дерева, достаточно просто добавить счетчик в уже рассмотренный алгоритм для определения высоты дерева.

# /* функция для вычисления ширины дерева */ def getMaxWidth(self,root): maxWdth = 0 i = 1 width = 0 ; h = self.height(root) while( i < h): width = self.getWidth(root, i) if(width >maxWdth): maxWdth = width; i +=1 return maxWdth; def getWidth(self, root, level): if root == None: return 0 if level == 1: return 1 elif level > 1: return self.getWidth(root.left, level-1) + self.getWidth(root.right, level-1)
# /* функция для распечатки элементов на определенном уровне дерева */ def printGivenLevel(self, root, level): if root == None: return if level == 1: print ("%d " % root.data) elif level > 1: self.printGivenLevel(root.left, level-1); self.printGivenLevel(root.right, level-1); # /* функция для распечатки дерева */ def printLevelOrder(self, root): h = self.height(self.root) i=1 while(i<=h): self.printGivenLevel(self.root, i) i +=1
def sameTree(a, b): if a==None and b==None: return 1 elif a and b: return( a.data == b.data and sameTree(a.left, b.left) and sameTree(a.right, b.right) ) return 0

Количество узлов в бинарном дереве
Вычислить количество узлов в бинарном дереве также можно с помощью рекурсии.
Хотя с точки зрения производительности и принципов ООП, правильнее встроить счетчик в сам объект.

def size(node): if node==None:return 0; return(size(node.left) + 1 + size(node.right));

Немножко о производительности
Я протестировал наш класс на поиск. К сожалению, данная его реализация проиграла бинарному поиску по списку, описанному ранее. Я тестировал, запуская в 100000 цикле поиска элемента со значением 5 и результат нашего класса
400003 function calls (100003 primitive calls) in 3.481 seconds
против
200003 function calls in 1.791 seconds
Я считаю, что причина в рекурсивном исполнении данного метода + реализации на Python, а не Си)

  1. Дж. Макконнелл - Основы современных алгоритмов.
  2. Структуры данных: бинарные деревья. Часть 1
  3. Работа со структурами данных в языках Си и Python: Часть 6. Двоичные деревья
  4. Может быть полезным Обходы бинарных деревьев
Читайте также:  Орех дерево листья фундука

Источник

Деревья поиска

Дерево — одна из наиболее распространенных структур данных в программировании.

Деревья состоят из набора вершин (узлов, нод) и ориентированных рёбер (ссылок) между ними. Вершины связаны таким образом, что от какой-то одной вершины, называемой корневой (вершина 8 на рисунке), можно дойти до всех остальных единственным способом.

  • Родитель вершины $v$ — вершина, из которой есть прямая ссылка в $v$.
  • Дети (дочерние элементы, сын, дочь) вершины $v$ — вершины, в которые из $v$ есть прямая ссылка.
  • Предки — родители родителей, их родители, и так далее.
  • Потомки — дети детей, их дети, и так далее.
  • Лист (терминальная вершина) — вершина, не имеющая детей.
  • Поддерево — вершина дерева вместе со всеми её потомками.
  • Степень вершины — количество её детей.
  • Глубина вершины — расстояние от корня до неё.
  • Высота дерева — максимальная из глубин всех вершин.

Деревья чаще всего представляются в памяти как динамически создаваемые структуры с явными указателями на своих детей, либо как элементы массива связанные отношениями, неявно определёнными их позициями в массиве.

Деревья также используются в контексте графов.

Бинарные деревья поиска

Бинарное дерево поиска (англ. binary search tree, BST) — дерево, для которого выполняются следующие свойства:

  • У каждой вершины не более двух детей.
  • Все вершины обладают ключами, на которых определена операция сравнения (например, целые числа или строки).
  • У всех вершин левого поддерева вершины $v$ ключи не больше, чем ключ $v$.
  • У всех вершин правого поддерева вершины $v$ ключи больше, чем ключ $v$.
  • Оба поддерева — левое и правое — являются двоичными деревьями поиска.

Более общим понятием являются обычные (не бинарные) деревья поиска — в них количество детей может быть больше двух, и при этом в «более левых» поддеревьях ключи должны быть меньше, чем «более правых». Пока что мы сконцентрируемся только на двоичных, потому что они проще.

Читайте также:  Каштан дерево полезные свойства

Чаще всего бинарные деревья поиска хранят в виде структур — по одной на каждую вершину — в которых записаны ссылки (возможно, пустые) на правого и левого сына, ключ и, возможно, какие-то дополнительные данные.

Как можно понять по названию, основное преимущество бинарных деревьев поиска в том, что в них можно легко производить поиск элементов:
Эта функция — как и многие другие основные, например, вставка или удаление элементов — работает в худшем случае за высоту дерева. Высота бинарного дерева в худшем случае может быть $O(n)$ («бамбук»), поэтому в эффективных реализациях поддерживаются некоторые инварианты, гарантирующую среднюю глубину вершины $O(\log n)$ и соответствующую стоимость основных операций. Такие деревья называются сбалансированными.

Источник

Оцените статью