Значение жизненного цикла растений

Стадии жизненного цикла растений и их характеристика

Стадии жизненного цикла растений и их характеристика

Основные циклы развития растений

Что представляет собой цикл развития растений?

Жизненный цикл растений представляет собой совокупность этапов развития растительного организма, определяющиеся систематической принадлежностью.

Развитие растения происходит на протяжении всей его жизни. Начало жизненного цикла — попадание семени в почву и формирование нового организма.

Основными этапами жизненного цикла растений считаются:

  • прорастание;
  • рост или вегетация;
  • цветение;
  • опыление;
  • формирование и созревание семени;
  • распространение семян.

Особенности этапов жизненного цикла растений

Как только семена попадают в почву, начинается процесс их прорастания. Есть определенные вещи, необходимые для того чтобы семя проросло: определенная температура, кислород, вода. Свет как одно из условий прорастания актуален не для всех растительных организмов. Хотя есть такие растения, семена которых непосредственно зависят от наличия солнечного света и прорастают только при нем.

Имбибация представляет собой процесс поглощения сухим семенем воды.

Этот процесс можно сравнить с поглощением воды сухой губкой — в результате семя растет в размерах и меняет свой цвет. После того как семя высажено в почву, оно на протяжении нескольких дней поглощает воду. Как результат — сильное набухание семени и отпадание семенного слоя. Происходит прорастание стебля в почву вместе с семядолями и листьями. Корень же растет вглубь в поисках воды с достаточным количеством питательных веществ.

Очень важно высаживать семена в определенное время и в определенном месте — это гарантирует его прорастание.

Следующая стадия жизненного цикла растения — вегетация. Она знаменует собой окончание стадии роста. Она сопровождается началом самостоятельного производства растением питательных веществ. Речь идет о фотосинтезе, который начинается, когда появляются первые листья, содержащие хлорофилл.

Фотосинтез представляет собой процесс синтеза органических веществ из воды и углекислого газа с помощью солнечной энергии и при участии хлорофилла.

Избыточный сахар хранится в корнях и стеблях. Впоследствии корневая система продолжает интенсивно развиваться, что позволяет растению закрепляться в почве. Корневые волоски увеличиваются — чтобы лучше поглощать воду и питательные вещества: как из вертикальных слоев почвы, так и из горизонтальных. Продолжается рост растительного заростка: он тянется к солнцу и транспортирует воду и пищу между корнями и листьями.

Образовательная ткань или меристема обеспечивает рост с апекса побега новых листьев растения.

В жизненном цикле цветковых растений есть стадия цветения, которая берет начало с развития цветочных почек. Сроки цветения у растений различаются. Для одних характерно цветение на протяжении нескольких дней, а для других — месяцев или даже лет.

Читайте также:  Комнатные ампельные растения плющи

Далее следует этап репродукции, который сопровождается зарождением внутри почки небольшого цветка. До момента открытия почку защищает чашечка. После этого происходит раскрытие бутона, и зрелый цветок расцветает.

Чашелистики имеют вид небольших зеленых листьев и располагаются у основания цветка.

Цветок представляет собой генеративный орган покрытосеменных растений.

В жизненном цикле покрытосеменных цветок играет важную роль. В большинстве случаев цветок имеет яркие и заметные лепестки с ароматом для привлечения насекомых-опылителей. Пестик — женская часть цветка, а тычинки — мужская. Пестик включает в себя:

Тычинки, в свою очередь, включают:

Основная функция стигмы — ловля пыльцы и опускание ее в завязь пестика. После попадание пыльцы в ловушку, происходит ее перемещение вниз по стилю до закругленной части в конце. Именно в этом месте происходит оплодотворение. Оплодотворенные яйца превращаются в семена на этой стадии. Появление плодов у овощей и фруктов, плодовых растений, указывает на созревание.

Процесс опыления — главный этап жизненного цикла растения, который зависит от строения цветка. На одном растении могут встречаться как женские, так и мужские части: такое растение называют двудомным. При наличии только одной части растение будет считаться однодомным.

Привлечение опылителей очень важно для растения, так как без этого невозможен процесс размножения и последующие стадии развития.

Распространение семян — последний этап жизненного цикла. Есть множество способов распространения, но основными считаются при помощи ветра (так распространяются семена одуванчика) и зоохория или распространение при помощи животных.

Распространение семян у водяных лилий находится в зависимости от количества воды.

Многие семена распространяют люди — в процессе посадки огорода или сада. При попадании семян в землю жизненный цикл повторяется.

Периоды жизненного цикла растений могут называться по-другому:

  • зародышевый. Это период от образования зиготы до прорастания семени;
  • вегетативный или молодость. Начинается с прорастания семени и заканчивается с первым цветением. В начале периода растение представляет собой предросток. Его развитие определяется запасом питательных веществ;
  • генеративный. Начало — появление репродуктивных органов. Это период зрелости;
  • заключительный или период старости. Отмечается медленный рост вегетативных органов.

Продолжительность жизни растений различается, что определяет различную продолжительность каждого из циклов.

Однолетние растения проходят все циклы в течение одного года. Двухлетние растения в первый год проходят вегетативный период, а во второй год происходит переход в генеративный период.

Генеративный период у многолетних растений довольно продолжительный. В это время они образуют множество семян, что обеспечивает их распространение.

При всем разнообразии жизненных циклов растений, растения отличаются одинаковыми стадиями развития.

Источник

64. Понятие о жизненных циклах, чередовании поколений. Значение и особенности жизненного цикла водорослей, грибов и высших растений.

У каждого растения полный жизненный цикл развития возможен только при наличии бесполого и полового способов размножения, которые осуществляются в определенной очередности, т. е. происходит чередование, или смена, поколений — бесполого и полового. Особь, образующая органы полового размножения с половыми клетками — гаметами, называется половым поколением, или гаметофитом. Особь, на которой образуются органы бесполого размножения со спорами, называется бесполым поколением, или спорофитом.

Читайте также:  Приятно пахнущие комнатные растения

В процессе эволюции у разных групп растений гаметофит и спорофит формировались неодинаково, поэтому в растительном мире существует значительное разнообразие и различие в морфологическом строении этих поколений. У многих водорослей оба поколения развиты одинаково, внешне довольно сходны и живут самостоятельно, у некоторых водорослей и большинства высших растений — отличаются или зависят один от другого. Так, у мхов гаметофит морфологически более дифференцирован и развит, поэтому самостоятельнее, а спорофит паразитирует на гаметофите. У папоротников оба поколения живут и питаются самостоятельно, но спорофит значительно превосходит гаметофит по размерам и развитию вегетативных органов. Для семенных растений характерна редукция гаметофита и прогрессирующее развитие спорофита. У цветковых растений чередование поколений почти не выражено из-за значительной редукции гаметофитов: мужского — до двухклеточного пыльцевого зерна, женского — до восьмиядерного зародышевого мешка. Микроскопически малые гаметофиты живут на спорофите — хорошо развитом, крупном растении.

Одновременно с чередованием поколений в цикле развития происходит смена ядерных фаз. Она заключается в следующем. Споры имеют гаплоидный набор хромосом, так как образуются в спорангиях спорофитов из спорогенной ткани в результате редукционного деления. Из споры развивается гаплоидный гаметофит, на котором формируются гаплоидные гаметы. При их слиянии на гаметофите образуется зигота с диплоидным набором хромосом. Гаплоидная фаза ядра сменилась диплоидной фазой. Из зиготы развивается диплоидный спорофит. Затем при образовании спор число хромосом снова уменьшается вдвое и т. д. Имея различное число хромосом, гаметофит и спорофит различаются внешне.

Чередование поколений имеет большое биологическое значение, так как при этом сочетается два способа размножения — бесполое, дающее большое число особей, и половое, способствующее обогащению наследственности потомства. Понятие «чередование поколений» следует считать условным, так как ни спорофит, ни гаметофит в отдельности не могут обеспечить полного цикла развития растения, они являются различными этапами жизни одного и того же растения.

65. Систематика как раздел ботаники: цель, задачи, методы, связь с другими разделами ботаники. Составляющие ботанической систематики, современные филогенетические системы; таксономические категории и таксоны, ботаническая номенклатура. Суть и значение в фармации хемосистематических признаков.

Систематика растений изучает разнообразие растительного мира, выявляет, описывает, классифицирует растения, дает им наименования, устанавливает пути эволюции и родственные взаимосвязи. Как наука она сформировалась в XVI веке. Основная задача систематики — познать растения и создать единую систему растительного мира. По образному выражению академика А.Л. Тахтаджяна, «систематика есть одновременно и фундамент, и венец биологии, ее начало и конец, ее альфа и омега». Систематика включает такие тесно связанные между собой разделы, как таксономия, номенклатура и филогенетика.

Читайте также:  Редкие исчезающие виды растений алтайского края

Таксономия, или классификация, занимается распределением растений в соподчиненную систему категорий с учетом их строения, происхождения, биологических и физиологических особенностей. Таксономия использует определенные ранги, уровни классификации — таксономические категории, или систематические единицы. Основными из них являются: видspecies, родgenus, семейство — familia, порядокordo, классclassis, отделdivisio, или phylum, царствоregnum. Между основными категориями имеются промежуточные: подвид, подрод, подкласс, надцарство, подцарство и др. К конкретным таксономическим категориям относятся определенные группы организмов — таксоны. За их название, наименование отвечает такой раздел, как номенклатура. Например, семейство — это таксономическая категория, а семейство Solаnaсеае — таксон. Каждый таксон определенного уровня имеет в своем названии унифицированное окончание (например, отдел — phyta, класс —psida, семейство — асеае, род — а или — um). Это позволяет по названию таксона определить таксономическую категорию без ее указания. Все таксоны, кроме вида, принято называть одним словом, а вид — двумя: первое слово определяет род, к которому относится данный вид, второе вместе с первым составляет его видовое название. Бинарная номенклатура была предложена К. Линнеем, который описал и назвал большое количество растений. В соответствии с этой номенклатурой родовое название обозначается именем существительным и пишется с большой буквы, а видовое — именем прилагательным и пишется с маленькой буквы. После видового названия растения указывается сокращенно фамилия автора, описавшего и назвавшего данное растение впервые (например, Equisetum arvense L.— хвощ полевой, Линней).

Филогенетика устанавливает эволюционное родство видов, изучает историческое развитие растительных организмов, систематических групп и всего растительного мира. История филогенетики складывается из развития и совершенствования систем растительных организмов. После утилитарных систем первыми научными были искусственные морфологические системы, основанные на одном-двух произвольно выбранных признаках (К. Линней). Они просуществовали до XVII века, когда стали создаваться естественные системы, построенные на комплексе морфологических признаков, но без учета родственных связей (А. Жюсье). В конце ХIХ века появились эволюционные, или филогенетические, системы, учитывающие происхождение и родственные отношения групп растений, сравнительные данные молекулярной биологии, морфологии, анатомии, эмбриологии, кариологии, биохимии, географии и экологии растений (А. Энглер, А.А. Гроссгейм, А.Л. Тахтаджян). С начала XX века успешно развивается такое направление, как хемосистематика, основанное на сравнительном анализе химического состава растений различных систематических групп. Данные хемосистематики способствуют не только совершенствованию системы растений, но и указывают направления поиска дополнительных источников биологически активных веществ, ведут к открытию новых лекарственных растений.

Источник

Оцените статью